
Quick Guide to Multi-Camera

Self-Calibration

Tomáš Svoboda

svoboda@vision.ee.ethz.ch

Computer Vision Lab, Swiss Federal Institute of Technology, Zürich

BiWi-TR-263, Version 0.2, August 20, 2003

We present a convenient calibration method for multiple cameras. Three
cameras are the minimum but there is no upper limit. The method is fully
automatic and a laser pointer is the only hardware used. A set of virtual
3D points is made by waving the laser pointer through the working volume.
Its projections are found with sub-pixel precision and verified by a robust
RANSAC analysis. The cameras do not have to see all the same set of
points, only reasonable overlap between camera subgroups is assumed. Pro-
jection structures are computed via rank-4 factorization and the Euclidean
stratification is done by imposing geometric constraints. This linear esti-
mate initializes a post-processing computation of radial distortion which is
also fully automated. We show that it is possible to calibrate an immersive
virtual environment with 16 cameras within 30 minutes reaching about 1/4
pixel accuracy. The method has been tested on numerous multi-camera en-
vironments scaling quantity such as quality of the cameras. A short user’s
guide is part of the report, too.
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1 Introduction

With decreasing prices of powerful computers and cameras, smart multi-camera systems
start to emerge. A complete multi-camera calibration is the inevitable step towards
the efficient use of such a system even though many things can be accomplished with
uncalibrated cameras. To our best knowledge, no fully automatic calibration method
for multi-camera environments exists.
Very recent multi-camera environments [13] or [5] which are primarily designed for a

real-time 3D acquisition use advanced calibration methods based on a moving plane [20]
and [1]. These calibration methods do not require a full 3D object with a known 3D
coordinates. However, they share the main drawback with the old classical methods. The
moving plane is not visible in all cameras and the partial calibrated structures have to be
chained together which procedure is very prone to errors. Kitahara et al. [10] calibrate
their large scale multi-camera environment by using a classical Tsai-like method [18].
The necessary 3D points are collected by a combined use of calibration board and 3D
laser-surveying instrument. Lee et al. [11] establish a common coordinate frame for a
sparse set of cameras that all observe a common dominant plane. They tracked objects
moving in this plane and from their trajectories they estimated the external parameters
of the cameras in one coordinate system. Baker and Aloimonos propose a calibration
method for a multi-camera network which, however, still requires a planar pattern with
a precise grid [3].
We propose a fully automatic calibration method which yields complete camera pro-

jection models and needs only a laser pointer1. At least approximately synchronized
acquisition is assumed. The user is required to wave the laser pointer throughout the
working volume. This is the only user action required. The laser projections are de-
tected independently in each camera. We fit 2D Gaussian as a point spread function
reaching sub-pixel precision. The points are validated through a pairwise epipolar con-
straints. Projective motion and shape are computed via rank–4 factorization. Geometric
constraints are applied and projective structures are stratified to Euclidean ones. The
parameters of the non-linear distortion are computed through iterative refinement. All
these steps are described in this paper. The complete coupled calibration software yields
about 1/3 pixel reprojection error even for cameras with significant radial distortion.
The paper reads as follows. Section 2 explains very shortly the necessary mathematical

theory behind the algorithm which practical implementation is described in Section 3.
Experiments on two different multi-camera environments are presented in Section 4. The
paper closes with the concluding Section 5. Impatient users may jump directly to the
Appendix and try to perform own self-calibration step by step. A description of the
output parameters is also there.

1The small modification suggested later is extremely simple and costs essentially nothing.
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Figure 1: Multi-camera setup with 4 cameras.

2 Algorithm — Theory

Let us consider m cameras and n object points Xj = [Xj , Yj, Zj , 1]
>, j = 1, . . . , n. We

assume the pinhole camera model, see [9] for details. The 3D points Xj are projected
to 2D image points ui

j as
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where each P
i is a 3 × 4 matrix that contains 11 camera parameters, and u, v are pixel

coordinates. There are six parameters that describe camera position and orientation,
sometimes called external parameters, and five internal2 parameters which describe the
properties of the camera. The u

i
j are observed pixel coordinates. The goal of the

calibration is to estimate scales λi
j and the camera projection matrices P

i. We can put
all points and camera projections (1) into one matrix Ws:

Ws =























λ1
1





u1
1

v1
1

1



 · · · λ1
n





u1
n

v1
n

1





...
...

...

λm
1





um
1

vm
1

1



 · · · λm
n





um
n

vm
n

1



























=







P
1

...
P

m







3m×4

[X1 · · ·Xn]
4×n (2)

2Term intrinsic is also widely used.
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Ws = PX , (3)

where Ws is called the scaled measurement matrix, P = [P1
· · · P

m]> and X = [X1 · · ·Xn].
P and X are referred as the projective motion and the projective shape respectively. If
we collect enough noiseless points (ui

j , v
i
j) and the λi

j are known, then Ws has rank 4 and
can be factorized into P and X.
It should be noted that the only input we have is the collection of ui

j . Let assume that
the point coordinates are organized in a matrix W. This matrix is very similar to Ws in
(2). However, the scales λi

j are not known in advance moreover, some of the points u
i
j

may be missing because of occlusions or simply mis-detection. To compute the scales λi
j

we applied the approach proposed in [14]. The missing points are filled in by applying
rank-4 constraint, an approach suggested in [12].
The factorization of (3) recovers the motion and the shape up to a 4 × 4 projective

transformation H:
Ws = PX = PHH

−1
X = P̂X̂ , (4)

where P̂ = PH and X̂ = H
−1
X. Any non-singular 4 × 4 matrix may be inserted between

P and X to get another compatible motion and shape pair P̂, X̂. The self-calibration
process computes such a matrix H that P̂ and X̂ become Euclidean, sometimes is this
process called Euclidean stratification [9]. The task of finding the appropriate H can be
achieved by imposing certain geometrical constraints. The most general constraint is
the assumption that rows and columns of camera chips are orthogonal. Alternatively,
we can assume that some internal parameters of the cameras are the same, which is
more useful for a monocular camera sequence. The minimal number of cameras for a
successful self-calibration depends on the number of known camera parameters or the
number of parameters that are unknown but same for more cameras. For instance, 8
cameras are needed when the orthogonality of rows and columns is the only constraint
and three cameras are sufficient if all principal points are known or if the internal camera
parameters are completely unknown but the same for all cameras [9]. The process
described in more theoretical detail in [16].
We often require to remove nonlinear distortion if high precise 3D computation is

requested. Our multi-camera setups offer more convenient (robust) configurations for
3D computations than classical stereo-based systems. On the other hand, we use lenses
with short focal lengths which suffer from relatively significant distortion.
The principle is the following. First, reconstruct the calibration points by using the

linear parameters and then feed theses 3D-2D correspondences into a standard method
for estimation of the nonlinear distortion and repeat the self-calibration with the undis-
torted points. We decided to apply a part of the CalTech camera calibration toolbox [4].
Its Matlab codes are freely available and the estimated parameters are compatible the
OpenCV library [1] which is useful for an eventual on-line distortion removal. The self-
calibration is then repeated with the corrected point coordinates. This estimate and
refine cycle is repeated until it reaches the required precision. This coupled iterative
approach yields typically an average reprojection error less than 1/4 pixel.
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3 Algorithm — Practical Implementation

In the previous section, we have argued that the data matrix W containing the image
points is the only input we need for the calibration. This matrix may contain some miss-
ing points however, the more is this matrix full the more accurate and stable calibration
results may be expected. Finding points u

i
j and establishing correspondences across

many images is a difficult task. We solved the problem by waving a slightly modified
laser pointer through the working volume, see Figure 2. The very bright projections of
the laser can be detected in each image with sub-pixel precision by fitting an appropriate
point spread function. These particular positions are then merged together over time,
creating thus projections of a virtual 3D object. Our proposed self-calibration scheme
can be outlined as follows:

1. Find the projections of the laser pointer in the images.

2. Discard wrongly detected points by pairwise RANSAC analysis [7].

3. Estimate projective depths λi
j and fill the missing points by the method de-

scribed [12].

4. Optimize the projective structure by using the Bundle Adjustment [17], if appli-
cable.

5. Perform the rank 4 factorization of the matrix Ws to get projective shape and
motion [9].

6. Upgrade the projective structures to Euclidean by the method described in [16].

7. Detect remaining outliers by evaluating the 2D reprojection error. Remove them
and repeat steps 3–6.

8. Estimate the parameters of the non-linear distortion and repeat the steps 2–7.
Stop if the reprojection error is below the required threshold or if the maximum
allowed number of iteration exceeds.

9. Optionally, if some true 3D information is known, align the computed Euclidean
structures with a world system.

3.1 Finding corresponding points

We need a rather robust method for finding points since it is not always possible to make
the working volume completely dark. The camera room may have windows and glossy
surfaces making thus mis-detection probable. Any user interaction is not an option
because of large number of images. However, it is assumed that the imaging conditions
provide enough contrast between the laser pointer and the background. Our automatic
finding procedure contains the following steps:
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Figure 2: Immersive virtual environment BlueC [8] and the modification of a laser
pointer. Small piece of transparent green or red plastic is attached to the
laser pointer. The modification has been invented in order to get better visi-
bility from different viewpoints. However primitive solution it is, it does the
job very well. The working volume is inside the glass cave. Four cameras
are mounted in the top four corners of the construction and the remaining 12
cameras are mounted on the aluminum scaffold that encompasses the cave.
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1. The mean image and the image of standard deviation is computed for from all
images each camera.

2. The difference image between the mean one and the actual one is computed by
using the appropriate color channel. When using a green laser pointer, than the
green channel is used. A threshold is set to 4/5 of the maximum of the difference
image. The image is discarded if any of the following conditions holds:

a) The number of pixels in the thresholded difference image is much higher than
the expected LED size.

b) The maximum of the difference image is less than five times standard devia-
tion in this pixel.

c) The thresholded pixels are not connected, i.e. they compose more than one
blob.

d) The eccentricity of the detected blob exceeds a predefined threshold. This
condition is against motion blur.

3. The neighborhood of the detected blob is resampled to a higher resolution by using
bicubic interpolation in order to reach sub-pixel accuracy and robustness against
irregular blob shapes.

4. A 2D Gaussian is fitted to this interpolated sub-image by the 2D correlation to
get the final position of the LED projection.

The detection sequence above is very robust and works well in different multi-camera
environments. The color of the LED and the approximate expected size of the LED
may vary for different setups. However, in practice they turn out to be extremely stable.
The desired sub-pixel accuracy may be also specified however, 1/3 pixel should suffice
for most cases. Some of the validation steps above may be skipped when the imaging
environment is more controlled. The 2D correlation in step 4 is the most computationally
expensive operation. The steps 2–4 take together about 100ms for one 640 × 480 image
with LED size 7 pixels and 1/3 sub-pixel accuracy on a 2GHz machine. The localization
of the LEDs may run highly in parallel, which is the case at BlueC implementation.

3.2 Discarding wrongly detected points

Even though the procedure described in the previous section is fairly robust some false
points may penetrate. When some reflecting surfaces are present in the scene, e.g. glass
walls, a reflection of the laser light might be detected instead of the direct projection.
Such false points, called outliers, would spoil the projective reconstruction and have
to be discarded. The discarding step is twofold. First step is pairwise computation of
epipolar geometry and removing points that lie too far from epipolar lines. This step
clears the data at the very beginning of the whole process. The second step is an iterative
removing of outliers by analyzing 2D reprojection error.
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3.2.1 Finding outliers in image pairs

The image pairs are iteratively re-selected according to the highest number of visible
mutual correspondences. The points that were already detected as outliers are removed
from the list however, only for these two images. The other projections of the same 3D
point may be correct in other cameras. The epipolar geometry is robustly computed via
RANSAC 7-point algorithm [9]. The initial tolerated distance from epipolar lines has
to be pre-set by user. We use ten pixels which works well for all our datasets and this
value is then iteratively decreased as the camera models become more and more precise.

3.2.2 Finding outliers in reprojected points

Some wrongly detected point may survive the validation described above. It may happen
quite often that the point is found at a wrong position however, along the proper epipolar
line. We assume that the point is wrongly detected in most of the cameras and it is thus
highly probably discovered by the pairwise validation or it is in most of the cameras
detected correctly. In the latter case, the point is almost correctly reconstructed in 3D
space. However, when projected back to the “bad” camera it exhibits a large reprojection
error.

3.3 Euclidean stratification

The stratification works rather well when reliable projective structures were estimated
in the previous steps. We assume that cameras are different, have orthogonal rows
and columns, no skew, square pixels, and we initialize the principal points to be in the
image centers. It follows, from the counting argument [9], that we need at least three
cameras to perform the self-calibration. The resulting Euclidean projective matrices are
decomposed into the internal and external parameters. The initial assumption about
zero skew and known principal points is not used in the final decomposition. Hence, the
final internal parameters slightly deviate from the initial simplified ones.
The stratification without assuming known aspect ratios is generally less robust and

may occasionally fail in case of somehow unbalanced data. Camera looking in the same
direction close to each other is a typical example of ill conditioned scene for which the
self-calibration may fail for noisy data. We did not have any camera with non-square
pixels to really test it. However, this case is implemented, too.

3.4 Alignment with a world coordinate system

The self-calibration yields the external camera parameters in an unknown world coordi-
nate frame with the origin in the centroid of the point cloud. In practical applications,
it is often desirable to have all parameters in some well–founded coordinate frame. For
cave environments for instance, we would like to have the z = 0 plane coincident with
the cave floor. Several different approaches might be applied. Scene objects with known
dimensions and positions might be localized in image(s) and used for the alignment. We
utilize the knowledge of the camera approximate positions. Since we know the physical
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dimensions of the construction, we can approximate the positions of the camera centers
without actually measuring them. The precision in range of several centimeters or even
more is enough for reliable alignment. We need to know at least three cameras positions
while having more will increase the robustness. The used cameras must not lie on one
line. The similarity transformation is computed by using the algorithm [2].
Even approximate positions of the cameras are not always known. However, we can

often assume generally planar movement of the user. A bird eye view of the overall
arrangement would be useful. A plane is fitted to the reconstructed point cloud and
then rotated to a desired orientation. The similarity transformation is then directly
composed from this plane rotation.

3.5 Issues in estimation of the non-linear distortion

The iterative estimate and refine process is surprisingly stable assuming reasonable data.
More and more parameters of the non-linear distortion are computed during the itera-
tion. This process may occasionally fail for cameras which have weak coverage of the
image plane or too many outliers. Disabling the automatic increasing the number of
free parameters could stabilize the whole process. The point of the zero distortion is the
most unstable parameter. Its estimation becomes unstable if the points are only on one
side of the image. It is better to disable the estimation of this point and put it into the
image center in case of such uncomplete data. The final reprojection error may remain
rather high, say about one pixel. However, wrongly estimated non-linear parameters
could destroy the overall geometric consistency. The filled 3D points are also used for
the estimation. New data acquisition is suggested if nothing else helps. The number
of iterations is by default constrained to 10. Actually, according to our experience the
whole refinement should converge within 5-6 iterations. If not, than the desired model
precision is set too optimistically with respect to the quality of the data.

3.6 Validation of an existing calibration

Sometimes we would like to know if the calibration is still valid or not. We may always
re-calibrate the system completely. However, this takes some time, and the resulting
parameters will not be exactly the same as the old ones even the setup remained the
same. We suggest the following practical approach:

1. Capture about 100 frames whilst waving the laser pointer.

2. Find points.

3. Perform a robust Euclidean reconstruction by trying all combinations of camera
n-tuples.

4. Select the camera n-tuple with the lowest reprojection error and its variance.

5. Evaluate the reprojection errors of this most consistent reconstruction.
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The first two steps are the same as for the self-calibration itself. However, essentially
less points are required. The complete validation may be thus completed in really few
minutes.

4 Experiments

We would like to demonstrate two major properties in which our solution outperforms
competitors:

• The laser point acting as a calibration device need not to be visible in all cameras
simultaneously.

• The parameters of the non-linear distortion are estimated without any additional
information.

The ability of filling missing points significantly broadens the possible use of our algo-
rithm. Multiple cameras for immersive environments or telepresence virtual rooms often
encompass the whole volume posing thus challenges in visibility. Our Blue-C [8] setups
with 16 cameras each have almost no occlusion because of relatively empty working
volume. However, the calibration point is visible in all cameras in only fraction of all
calibration frames. Worse, points which are visible in all cameras span usually small part
of the possible working volume making thus estimation unstable. Occlusions and very
different, or even disjoint, fields of view are common problems when using our mobile
version of out ViRoom [6, 15] system. Calibration based only on the points visible in
all cameras would be virtually impossible here. The filled points take also part in the
estimation of the non-linear distortion.
We will show that our automatic estimation of the non-linear lens parameters is able

to compensate huge distortion of fish-eye lenses. This feature is necessary for very precise
shape reconstruction applications.
We have used our algorithm on several multi-camera setups scaling both quality and

quantity of the cameras, used. We start with Blue-C experiments. The Blue-C setups
have 16 cameras each. Firewire cameras are synchronized by an external sync signal,
each camera has its own computer running under Linux for acquisition. The calibration
sequences have been acquired at 3–5 frames per second. Lower capturing frequency allow
to fill the working volume without accumulation unnecessary high number of points. The
speed of the waving is dictated by the shuttering time of the cameras. It is desirable
not to move very fast to avoid motion blur. The lenses span from 2.8mm to 12mm
exhibiting often considerable radial distortion. Both setups are used for high quality
reconstructions which calls for very high precision of the camera models. We show that
we are able to calibrate the setups achieving reprojection error about 1/5 pixels.
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Figure 3: Filling of the points not visible in the cameras shown but in the others. On the
left, a Blue-C camera mounted on the ceilings. On the right, a camera from
a ViRoom installation. The camera have limited fields of view and do not
see the whole working volume. The filling feature is clearly observable. Some
points which have been reconstructed in 3D are clearly outside the image
sensor (dashed line). They are visible in other cameras and filled into the
measurement matrix.
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Figure 4: Results of the Euclidean stratification for the Blue-C 16-cameras setups. Small
blue circles denote position of the camera centers, blue lines the orientation of
the optical axes. The red circles show the reconstructed positions of the laser
pointer.
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Figure 5: Results of the Linear model estimation. The left figure shows the point re-
projections in one of the cameras with significant radial distortion. The small
circles denote the detected points, red ones are tentative outliers which were
detected in the pairwise RANSAC validation. The crosses are back-projected
reconstructed calibration points. Right figure shows average reprojection er-
rors and standard deviations in each camera. You can clearly distinguish the
cameras No. 9,10,17,18 which are mounted inside the cave and have the short-
est lenses and thus significant distortion.
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Figure 6: Complete projection model. The left figure shows the same camera as the
left figure in Fig 4. The green circles are the originally detected points, the
blue ones show points after undoing radial distortion. The right graph illus-
trates well–balanced reprojection error around 1/5 pixels. Compare with the
reprojection of the linear model in Fig 4.
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Figure 7: Results of the Linear model estimation. Example of an unbalanced multi-

camera system. The camera 12 has a fish-eye lens with huge radial distortion.
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Figure 8: Results of the complete model estimation. The camera 12 still has higher
reprojection error than the others. However, from the initial error about 7
pixels it decreased to less than 0.4 pixels. The extreme radial distortion can
be clearly recognized in considerably different positions of the green (original
points) and blue/red circles (undistorted points).
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Figure 9: Example of a less controlled multi-camera setup. Note significant differences
in camera fields of view. The filled points go essentially outside the image
planes (denoted by dashed rectangle). The last camera (bottom-right) is quite
far from the others and the points are clustered around the image center only.
The first camera (top-left) has very unbalanced spread of points. Note also the
considerable number of outliers caused by a very difficult imaging conditions.
The cameras are synchronized based on TCP/IP communication only. Nev-
ertheless, the 6-camera setup is calibrated reliable with less than two pixels
reprojection error.

The ViRoom setups, both mobile one and static one pose slightly different challenges.
The sub-pixel accuracy is not strictly required, shape 3D reconstruction is not the main
application here. The setups are used for multi-camera tracking, activity monitoring,
telepresence applications. The mobile version with six cameras and two laptops has been
successfully used in a real factory environment. Both setups contain varying number of
simple firewire cameras without external synchronization. One computer, standard PC
or a laptop running on Linux, has often to serve more than just one camera. The
acquisition is controlled via TCP/IP communication [6]. The working volume often
contains furniture other computers and it cannot be completely darkened. Even worse,
the camera fields of view frequently overlap only marginally. Still, our system is able to
calibrate such setups with sufficient precision. The estimation of the non-linear distortion
is difficult in such environments and may fail. It is mostly necessary to fix the center of
the non-linear distortion which is quite brittle parameter for unbalanced spread of image
points. The limited precision of the synchronization also plays a role. Simply speaking,
you cannot get better precision of the calibration than your points have.
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5 Conclusion

A reliable scheme for a complete and fully automatic calibration of a multi-camera
network has been presented. A laser pointer or any similar bright spot object is the
only required additional hardware. Waving this object through the working volume is
the only hand work required. The object needs not to be visible in all cameras. The
non-linear distortions are estimated from the same data set.
Experiments with different multi-camera setups scaling quality and quantity demon-

strated the broad usability of our algorithm.
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6 Appendix: Multi-camera self-calibration made easy

The following step-by-step procedure should work for most of the setups. However, if
something goes wrong it may be necessary to consult the previous part of the report. A
working multi-camera system with at least three cameras is assumed as well as a cali-
bration laser pointer. During the time, the software package might get upgraded faster
than the text hence, inconsistencies may appear. The more detailed but unorganized
explanation may be found in ./MultiCamSelfCal/README.txt file.

1. Arrange the cameras, fix them as much as possible.

2. Switch off the lights, draw the curtains if available. Ideally, the room should be
relatively dark. If not possible, modify the camera parameters. If you have a strong
laser pointer you may decrease the gain of cameras, close the iris, or shorten the
shuttering time.

3. Capture a sequence whilst waving the pointer through the working volume. Try
to fill the working volume uniformly.

4. Collect the captured images and check the config variables in the
./CommonCfgAndIO/configdata.m: config.paths.*, config.files.*, config.imgs.*.

5. Start the ./MultiCamSelfCal/FindingPoints/im2points script. The most fre-
quent failure is the incorrect setting of config variables.

6. Check the config.cal.* variables and start ./MultiCamSelfCal/gocal. Wait
for the results. The gocal process may lead to bad results or even crash from
several reasons. We will try summarize them later.

6.1 Failure of the gocal, what to do

We try to summarize possible reasons which may lead to a failure of gocal process and
suggest eventual solution. Some failures certainly remain undiscovered, if you find one
please let me know.

Inconsistent input data. The process then typically crashes at the very beginning com-
plaining about uncomplete, not found or simply inconsistent data. → Check the
config variables, access right to the files. Whatever it may sound strange, this is
the most frequent reason for a failure. This error is especially likely if you use your
own program for finding calibration points.

Ransac validation fails. The input matrices may have valid dimensions however, they
still may be inconsistent. → The typical reason is inconsistent acquisition and(or)
arrangement of images. The frames may not be consistently synchronized which
causes huge errors in computations. The Ransac validation contains currently a
c-code and it is not that stable. Try run gocal again. The RANSAC is stochastic,
it may help.
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Filling points fails. → The data matrix Ws is too sparse. Too few points survived the
RANSAC validation. Try to increase config.cal.INL TOL and(or) increase
config.cal.NUM CAMS FILL. Visualize the point structure by imshow(loaded.IdMat),
black means point not detected. If the matrix is too black, something is wrong.
→ Run showpoints script which visualizes the detected points in images. This
visualization may often discover some unexpected problems in point detection.

Reprojection error extremely high. The final validation step is iterating and the repro-
jection error is still extremely high in range of hundreds or even thousands. →

The input data is highly probably frame-inconsistent. It means, frames captured
at different time instants are considered as synchronized.

Reprojection error very high in only few cameras. Mostly because of two reasons. The
camera(s) is(are) out of sync, or something weird is apparent in its(their) field(s)
of view. → Disable this camera(s) by setting config.cal.cams2use variable and
run the gocal again. Run the showpoints script to detect possible problems. If
you have many cameras, it is rather probable that some of them may have some
hardware/software problem. The config.cal.cams2use variable turned out to be
very useful for tracking down problems.

Estimation of the non-linear parameters diverges. The final refinement through esti-
mation of the non-linear parameters reaches the maximum number of allowed it-
erations without success or even making the reprojection errors worse. → Check
the Matlab figures with the camera points. Are the points well spread, ideally uni-
formly, over the whole image planes? Try to disable some parameters by setting
the config.cal.NL UPDATE variable.

Euclidean parameters somehow suspicious. The reprojection error is relatively low,
say below three pixels, but the graphical output validation presents somehow sus-
picious result. You would expect something like on Figure 4 however, it is not.
Please note that the result may be still valid. The results on Figure 4 are already
aligned with a well-founded world coordinate system. You can find some example
of alignments functions in the ./MultiCamSelfCal/LocalAlignments directory.
Check the files planarmove.m, planarcams.m, erlangen.m. You may also try
to rotate the 3D plot interactively to reach some orientation that is similar to the
real arrangement of your cameras. Still, the results may remain really suspicious,
like chaotic orientation of cameras, placement inside the point cloud, etc. → Check
the spread of points in the image planes. The Euclidean stratification may become
unstable if the points occupy only minor part of the image. Try to disable the as-
sumption of square pixels by zeroing config.cal.SQUARE PIX. If it does not help,
force the bundle adjustment to be performed in each intermediate step by setting
the config.cal.START BA variable to 1.
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6.2 Outputs and auxiliary files

The format of the output parameters has been mainly formed by the Blue-C shape re-
construction algorithm [19]. However, a general purpose form is also available. All
the output files will be saved to the config.paths.data directory specified in the
configdata.m. Let M denote number of cameras and N the number of frames cap-
tured. In the above mentioned directory, you can find the following files:

*.tiff images Output from the im2points procedure. Mean images and images of the
standard deviations.

*.dat ASCII data files.

Res.dat M×2 matrix containing the image resolutions. Product of im2points.m.

IdMat.dat M ×N boolean matrix. 1 or 0 at (i, j) position means point detected,
resp. not, in the i−th camera and j−th frame. Product of im2points.m.

points.dat 3M × N matrix containing the u
i
j points. NaN (Non A Number) is

used if the point is not detected. Product of im2points.m.

Cst.dat M × 3 matrix with the coordinates of the camera centers. Product of
savecalpar.m.

Pmatrices.dat 3M×4 collection of the Euclidean projection matrices Pi. Product
of gocal.m. These Pmatrices are the raw output of the stratification. They
are not aligned with the predefined world coordinate system.

Pst.dat 3M ×3 collection of special matrices used in [19] for the back-projection.
Product of savecalpar.m.

cam%d.points4cal.dat contains 3D-2D correspondences used for the estimation
of the non-linear distortion. Product of gocal.m.

*.cal Calibration parameters.

%s%d.cal where %s is to be replaced by config.files.basename. It contains
coordinates of the camera center and back-projection matrix. These files are
directly used in [19]. Product of savecalpar.m.

camera%d.Pmat.cal contains the 3×4Pi matrix. These matrices could be decom-
posed to the particular calibration matrix by using the function
./MultiCamValidation/CoreFunctions/P2KRtC.m.
Product of savecalpar.m.

%s%d.rad contains parameters of the non-linear distortion. Directly used in [19]. Prod-
uct of ./CalTechCal/goradf.m.

*.eps are various graphical outputs, mostly products of gocal.m.
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