
Simulation of Turbulent Flow in Computer

Graphics: Applications and Optimizations

Ian Buck

Princeton University, Department of Computer Science

Independent Work for COS 397

Advisor : Perry R. Cook

www.cs.princeton.edu/~ ianbuck/turbulent

January 5, 1998

Abstract

The basis for the �rst part of this work was to explore what is involved

in simulating turbulent
ow using an already existing mathematical model.

This includes implementing a complete optimized C version of the model

and simulating
ow models such as acoustical instruments. The second part

of this work explores alternative methods of calculation for
ow simulation

using the graphics hardware as a mathematical engine. We present a few

di�erent methods to use the accelerated framebu�er to perform some of the

calculations required in
ow simulation.

Part I

Simulating Turbulent Flow

1 Introduction

Research in application of
uid
ow simulation has been an active topic in

computer graphics for over a decade. Such visual e�ects as simulated smoke,

�re, and liquids are all typically based on top of a mathematical model which

graphics researchers have been trying to improve through today. There have

been endless papers published in the ACM SIGGRAPH proceedings in '97,

'95, '93, '91, '90, and continuing back through '86 with a paper dedicated to

how the swirling atmosphere of Jupiter was simulated for the movie \2010"

(Yeager et al, 1986).

The primary di�culty in creating such visually stimulating e�ects, such as

simple candle smoke is that an intensive computational simulation is required.

To provide results which appear accurate, such calculations can be extensive

and quite slow. For example, the \2010" Jupiter swirls required a Cray X-MP,

while other simulations of candle smoke presented in the paper \Simulation

of Turbulent Flow Using Vortex Particles" (INESCA '94) achieved results

of 37 sec/frame for suitable results on an SGI Indigo (See Figure 1). Even

the most optimized solutions for three dimensional solutions with simulation

resolutions of 60x60x45 achieved 49 sec/frame (SGI Indigo2, see Figure 2).

These computation times can drastically limit the complexity and resolution

of the desired simulation. Furthermore, since it is a computational model,

attempts to drive the simulation to faster calculation times can render the

results unstable. Any new research which could improve the limits of the

simulation is rapidly being explored, and is a focus of this work.

For computer simulations, two di�erent mathematical models have been

used for creating realistic turbulent
ow. The �rst method, which was very

popular early in the development of
ow simulations, relies on a particle

based model. Each particle represents a �xed amount of rotation about that

point, called \vorticity." Particles are free to move in a simple Newtonian

force model determined by the vector �eld de�ned by the vorticity (Gamito

'94). These simulations can yield visually interesting results with natural

swirling motion which appears similar to those found in nature. However,

this model is not physically accurate since it not based actual
uid physics

1

Figure 1: This image was created by Manuel Noronha Gamito, \Simulation of Turbulent Flow Us-

ing Vortex Particles" using 200,000 particles in a 2D environment which resulted in a frame rate of 37

sec/frame.

Figure 2: This image was created by Nick Fostern, \Modeling the Motion of a Hot, Turbulent Gas"

(SIGGRAPH '97). He used the 3D voxel simulation used in this paper to produce this image of three jets.

Frame rates here for 40x50x40 resolution was 49 sec/frame.

2

and cannot be used for approximating real world environments. Furthermore,

interaction with �xed surrounding obstacles is unde�ned within this model.

The second model proposed for solving turbulent
ow applies the actual

physical equations which have been used for years by aeronautics engineers

and other disciplines who are interested in
ow calculations. Work has been

done in the area, most recently, by Fostern and Metaxas to make discrete

these equations into voxel approximations. By applying the necessary cal-

culations to each voxel box, the
uid
ow vectors through a medium can be

determined. Not only does applying the techniques proposed provide faster

frame rates than previous models, it also provides a physically accurate en-

vironment and high
exibility.

2 Navier-Stokes Mathematical Model

The Navier-Stokes equations are a set of rules de�ned as partial di�erential

equations which govern all forms of
uid
ow, including information regard-

ing position, speed, pressure, and temperature. To simplify the equation,

we make a certain assumptions about the model. To achieve basic turbu-

lence, our simulation is only interested in simple
ow without pressure or

thermal buoyancy in
uencing the motion. This simpli�es the equations into

a singular primary expression which breaks up into three parts. The �rst is

convection which de�nes basic transfer of motion; one area
ows into another.

The second component is drag. Here,
ow is slowed by the
ow surrounding

it. The �nal component is mass conservation for pressure. Since the medium

is considered incompressible, the amount of
ow entering into a region must

match the amount leaving.

du

dt
= Convection +Drag +Mass Conservation

du

dt
= �(u � r)u+ �r � (ru)�rp

� = Viscosity Constant

u = Velocity

p = local pressure

The constant � speci�es the viscosity of the medium. The higher the viscosity,

the more drag there is in the system. The pressure gradient (rp) allows the

pressure of the gas to e�ect the
ow. Since our model assumes that there is

3

Cell
(i,j)

u(i+1/2, j)u(i−1/2, j)

v(i, j+1/2)

v(i, j−1/2)

Cell
(i,j−1)

Cell
(i+1,j)

Cell
(i−1,j)

Cell
(i,j+1)

Figure 3: This diagram shows how the Fostern, Metaxas model is de�ned. The program keeps track

of all of the edge velocities where ui+1=2;j is the amount of
ow from cell i; j to i+ 1; j.

no compression, this term ensures mass conservation. This partial di�erential

equation can be made discrete through the �nite di�erences approximation,

which is de�ned as:

dF

dx
=

1

2h
(F (x+ h)� F (x� h) +O(h2))

The second order terms O(h2) can be assumed zero for the simulation. Ap-

plying this to the Navier-Stokes provides a discrete version of the equations

which can be implemented in the software.

3 The Model

The basis for the model implemented is largely taken from work done by

Fostern and Metaxas. The environment is �rst broken up into discrete areas.

In the two-dimensional case, this can be visualized as a grid, with each grid

square having dimension �x. The simulation keeps track of the
ow between

adjacent squares by maintaining the \edge" velocities.

For example, ui�1=2;j is the value of
ow across the edge shared by square

(i; j) and (i� 1; j). Likewise vi;j+1=2 is the
ow from (i; j) to (i; j +1) across

their shared edge. Positive values corresponding to upward or to the right

motion, therefore a positive value for ui+1=2;j indicates
ow leaving square

(i; j) and entering (i + 1; j). When the calculation requires an intermediate

4

value which is not directly maintained by the simulation, such as ui;j which

is at the center of the square, it is simply calculated as the average of ui�1=2;j
and ui+1=2;j. (See Figure 3.)

The primary bene�t of the Fostern and Metaxas edge scheme is that it

provides for fast and e�cient implementation of the Naiver-Stokes equations

described below. For each time-step, the discrete Navier-Stokes calculations

are performed for each grid box using velocities at each of the edges.

3.1 Convection and Drag

The convection and drag components can be calculated quite simply since,

in the discrete form, the next time step only relies on the edge values for the

immediate neighbors. In the simulation, these two terms are combined and

reduced to into one expression for optimal e�ciency. A single pass is then

made of over all of the squares updating all velocities. Here is the equation

for the convection and drag for the un+1
i+1=2;j term.

du

dt
= �

d2u

dx2
+

d2u

dy2

!
�

du2

dx
�

duv

dy

un+1
i+1=2;j = un

i+1=2;j +�t=�x[(un
i;j
)2 � (un

i+1;j)
2 + (uvn

i+1=2;j�1=2)
2

+(uvn
i+1=2;j+1=2)

2 + (�=�x)(un
i+3=2;j � 2un

i+1=2;j + un
i�1=2;j

+un
i+1=2;j+1 � 2un

i+1=2;j + un
i+1=2;j�1)]

3.2 Mass Conservation

Without the mass conservation term, the
ow has none of the interesting

features of natural turbulent
ow. For example, without mass conservation,

ow can cancel itself out when collided head on rather than swirling backward

as expected. Unfortunately, mass conservation is not as simple to compute

as the convection or drag. One way to implement mass conservation is to

insure that the amount of
ow going into a grid box matches the amount of

ow leaving. It can be shown that the gradient of u , the velocity contained

within a square, must be equal to zero.

r � u = 0

5

To include this in the calculation, the expression for r � u must be placed

into its discrete form:

ri;j = ui�1=2;j � ui+1=2;j + vi;j�1=2 � ui;j+1=2

Here we can see how Fostern and Metaxas' edge scheme can bene�t in the

calculations since all of the values in this expression are directly maintained

within the simulation.

This calculated value (ri;j) speci�es the amount of di�erence between

the incoming and outgoing
ow. Since this is a pressureless simulation, the

edge velocities must be modi�ed to reduce this term to zero.

Mass conservation cannot be calculated in a single pass operation similar

to the convection and drag terms. For example, if 1=4ri;j, was subtracted

from the left and lower edges and added to the upper and right edges, the

gradient would go to zero for that i; j square, however, all of the surrounding

squares would no longer have a zero gradient. Therefore, mass conservation

is performed through a multipass computation, stopping when the largest

gradient is below a certain threshold, as follows:

� Compute all r for all i; j.

� If ri;j > Threshold, subtract 1=4ri;j from ui�1=2;j, vi;j�1=2, add to

ui+1=2;j, and vi;j+1=2. Repeat for all i; j.

� If rMax > Threshold, repeat from step one.

This scheme is quite simple and provides for basic mass conservation within

the model. The 1/4 factor provides for a fast equilibration of mass between

each square while remaining stable. (Note that this can be decreased for a

smoother distribution with increases in computation time.)

3.3 Errors in Fostern and Metaxas Mass Conservation.

It should be noted that this mass conservation method is not identical to that

of Fostern and Metaxas which was presented in their SIGGRAPH '97 paper.

Their method used the gradient of u to calculate a potential �eld which

was maintained separately from the velocities. Using a method derived from

work published by Harrow and Welch, they iterated over a classical Poisson

equation.

6

However after a week of testing, I was unable to get their solution stable.

Afterward, I discovered from their web site the values provided within the

paper lead to unstable results. The modi�cation they suggested would have

slowed the calculation further to the point at which I derived my own mass

conservation described previously.

3.4 Rendering

While there has been a plenty of work on visualization of smoke and
uids

which can be used to represent turbulent
ow solutions, the primary focus of

this work was to study the only the calculation of turbulent
ow. Therefore,

a simple graphical representation was chosen. Red areas indicated horizontal

movement, while green showed vertical. To further show the e�ects of the

resulting velocity �eld, massless particles are introduced to the simulation to

show the actual motion described by the velocities.

3.5 Boundary Conditions

Since the algorithm is largely dependent on neighboring values, there is an

immediate question regarding what is meant to happen at the boundaries.

In almost all of my simulations, I allowed
ow to simply fall of the end of the

screen. This was done by detecting when the calculation was at the edge and

using values for the (i; j) square in place of the (i+1; j) which did not exist.

Although this does not provide entirely accurate results at the edge of the

screen, it keeps the simulation stable and does not disturb the surrounding

squares.

3.6 Flow Algorithm

The complete simulation algorithm done in a four stages: environment con-

ditions; drag and convection calculations; mass conservation; and rendering.

� 1) First set any �xed conditions with in the simulation. For example,

if there is a jet at position (a; b), set the proper values for ua;b.

� 2) Update all of the
ow values using the drag and convection calcula-

tion. Use the proper values at the boundaries.

7

� 3) Perform the mass conservation calculations. Calculate the gradients

at each (i; j). Update the edge velocities using the gradient. Repeat

until all gradients are below a speci�ed threshold.

� 4) Update all partial motions and render grid square to the screen with

the proper red and green components.

4 Basic Turbulent Flow

With a completed model, a
ow simulation was done and tested. There are

three main parameters within the model: �x: Width of the grid squares, �t:

the time step between frames, and � which is the viscosity of the medium.

Also there are threshold values for the mass conservation however this does

not directly modify the outcome only the accuracy and calculation time.

The simplest example of the turbulent
ow which illustrates the interesting

swirling motion and vortices, a jet is placed in the center of the screen and

at every frame is set to a �xed value. (See Figure 4.) Also, larger jets an

introduce stronger vortices. (See Figure 5.)

4.1 Stability

The stability of the algorithm is dictated by the assumptions made in the

discrete form of the Navier-Stokes equations. To allow the O(h2) to be as-

sumed zero, the velocities must not allow
ow to travel more than one grid

square within a time step.

max(u; v) < �x=�t

Although this constraint seems quite simple, it can be di�cult to maintain by

only controlling initial conditions since turbulent
ows can lead to all sorts of

velocities. Furthermore, from linear analysis of the Navier-Stokes equations,

it has been shown that the viscosity is also constrained:

� > (�t=2)max(u2; v2)

As long as these two equations are satis�ed, the simulation will remain

stable. To aid in detecting instabilities in the simulation, the velocity values

are checked at render time to see if they are found to be outside of acceptable

limits. If they are unstable, a prede�ned blue color is drawn instead of the

proper color value.

8

Figure 4: This image was produced after 250 iterations of the turbulent
ow algorithm. The red

areas indicate horizontal motion, while the green is vertical. In the center of the image there is a jet

which is set to a positive 5.0 every frame. This was a 64x64 simulation, Frame rate: 0.15 sec/frame

(�X = 0:05 �t = :001 � = 0:5)

Figure 5: This animation shows the swirling nature of the gas as a jet is brie
y applied. The vortices

formed is a direct result of the mass conservation calculations.

9

Cell
(i,j)

v(i, j+1/2)

v(i, j−1/2)

Cell
(i,j−1)

Cell
(i,j+1)

2222222
2222222
2222222
2222222
2222222
2222222
2222222
2222222
2222222
2222222
2222222
2222222
2222222

u(i+1/2, j)

v(i, j+1/2)

v(i, j−1/2)

u(i+1/2, j)

Figure 6: To include obstacles into the simulation model requires a special case on squares next to

the walls. To prevent
ow from going into walls, we set the u value to zero. To prevent drag, we set the

v value for the wall equal to square adjacent when were doing the calculation.

5 Acoustical Models

An interesting application of this work is the study of
ow within acoustical

instruments. If the model is accurate, a simple instrument could be modeled

to obtain an oscillating
ow which could produce simulated sound waves.

5.1 Walls

Before attempting to model an instrument, the simulation model must be

modi�ed to include how the
ow interacts with the walls of the instrument.

The Fostern and Metaxas edge model has the
exibility to include �xed

obstacles by setting the edge values to match those of the neighboring grid

squares. For example, in updating the value for ui+1=2;j with a wall in location

(i + 1; j), ui+1=2;j should be set to zero since there cannot be any
ow into

the wall. Furthermore in calculating the vi;j+1=2 term, the value for vi+1;j+1=2
of the wall should be set equal to vi;j+1=2 so that no drag is created from the

wall. (See Figure 6.)

Most of these cases can be handled in parallel with the regular drag and

convection calculations. Furthermore for the mass conservation, 1/3 of the

gradient is subtracted from the edge values if one of them shares a wall, 1/2

10

for two walls, etc.

5.2 Instrument: Basic Whistle

In order to design a working whistle, there are three di�erent characteristics

which must all be correct for an oscillation to occur at the opening. The size

of the whistle chamber, size and positioning of the opening, and the size and

amount on input
ow, all de�ne how the oscillation will occur.

To help in designing a working whistle, the implementation was rewritten

to take a PPM �le as input. Blue pixels indicated walls, red and green colors

speci�ed jets, while dark blue indicated where points where the velocity was

sampled and outputed into a sound �le. Using this modi�cation, whistles

could be designed with a simple editor, like xpaint, and tested. The frame

rates of the simulation where high enough such that it was clear within a few

minutes whether a stable oscillation was present.

In general, there were no direct methods for designing the whistle other

than guesswork. The goal was primarily to have
ow oscillation such that

initially the majority of the
ow would go inside the whistle and eventually

come around to push the original source out the opening. This would weaken

the
ow in the whistle chamber to the point which it could no longer divert

the original stream. This cycle would repeat itself and an oscillation would

be present.

After plenty of trial and error, the simplest model proved to be the most

successful. This single pixel input had a relatively small 16 pixel chamber

with 3 pixel opening. The sound wave produced an oscillation which as

nearly sinusoidal. Furthermore, to test the signi�cance of the viscosity, �

was increased, increasing the simulated thickness of the medium, and the

pitch of whistle dropped as expected. (See Figure 7.)

6 Discussion

The goal of the �rst part of this work was to implement a traditional turbu-

lent
ow simulation and test its capabilities. By correcting the model done

by Fostern and Metaxas, this working model was accurate enough to cre-

ate accurate simulation environments. The results of the oscillating whistle

shows how this
ow solution can be used for modeling actual systems.

11

Figure 7: These images show a working whistle. The blue pixels indicate walls in the simulation while

the yellow line is a graph of the velocity at the opening of the whistle over time. Here the di�erent values

of � e�ected the pitch: :002; :0025; :003

Like all previous work done in this area, speed is always an issue. The

framerates in the examples given were fast enough to watch it evolve in real

time. However, increasing the resolution of the simulation can drastically

slow the framerate. The second part of this work explores di�erent methods

of calculating the
ow solution.

12

Part II

Alternative Calculation

7 Introduction

A large extent of this work explores di�erent solutions to the work done by

Foster and Metaxas. We examine alternative methods of calculating frames

using graphics hardware for improved performance, an area which has been

largely overlooked in the research done in
ow simulation. The capabilities of

graphics hardware on most workstations and even common personal comput-

ers is rapidly increasing. We show that it is possible to tap this computing

resource to perform the necessary calculations for
ow simulations as done

in part I. Using basic imagining API provided by OpenGL, these physical

calculations can be performed in parallel through the dedicated hardware.

This can increase performance of these simulations, in some cases, drastically

but still provide the necessary
exibility for a working solution.

Also, related to the graphics hardware extensions, this work examines

the signi�cance of number representation and its e�ects on the mathematical

model. The simulation is also con�rmed to be physically accurate by testing

a acoustical model.

8 Graphics Parallels: Temperature Di�usion

There are clear parallels in the types of computation which occurs in physical

simulations and computer graphics. The simplest example is temperature

di�usion. This partial di�erential equation for di�usion is identical to the

drag coe�cient of the
uid model.

dT

dt
= �r � (rT)

where � = Thermal Conductivity

This equation describes how temperature disperses through a �xed medium,

like a block of metal. This can be made discrete using the same �nite di�er-

ences method used for the Navier-Stokes equations, resulting in the expres-

sion

13

Figure 8: Here are the results of the temperature di�usion showing shots of the initial conditions, after

150 frames, and 500 frames. The intensity indicates the heat values.

T n+1
i;j

= T n

i;j
+ k(T n

i+1;j � 2T n

i;j
+ T n

i�1;j + T n

i;j+1 � 2T n

i;j
+ T n

i;j�1)

where k =
�t�

�x2

Using the discrete equation, the simulation can be run showing a temper-

ature �eld di�using into the surrounding medium. The luminance indicates

the intensity of the heat. See Figure 8.

However without looking at the underling equations, these images appear

to be a simple blurring �lter. This observation suggests that simple graphics

related computation could be used to do the calculations required for the

simulation. In fact, the discrete equation can be rewritten into a simple

convolution matrix which is familiar to graphics programmers.

T n+1
i;j

=

0
B@

0 k 0

k 1� 4k k

0 k 0

1
CAT n

i;j

9 Hardware Computation and Limitations

9.1 Graphics Parallels

All of the calculations involving Navier-Stokes and temperature di�usion are

based upon partial di�erential equations involving the same mathematical

14

Float temp[][];

Host Memory

Calculation

CCCC
CCCC
CCCC

CCCC
CCCC
CCCC

Copy to
Framebuffer

CCCC
CCCC

CCC
CCC
CCC Graphics API Calls

CCCC
CCCC
CCCC

CCC
CCC
CCC
CCC

Figure 9: The ine�ciency of the classical model is that two copies of the data are represented in the

host memory and on the framebu�er. One is updated and then extra CPU cycles must be spent updating

the frame bu�er. To remove this ine�ciency, we implement a method to perform all of the calculations

within the framebu�er using the graphics API.

operations across each of the sample areas in the simulation. Ideally, we

would like the graphics hardware to perform all of these calculations in par-

allel by keeping the data all inside the framebu�er and manipulating through

graphics calls. See Figure 9.

Basic graphics operations, such as blending or �ltering, all can be used

to provide basic algebraic calculations. OpenGL provides a hardware inde-

pendent API for graphics operations which can be used for these purposes.

glConvolutionFilter2D: Apply a nxn convolution

matrix across each pixel.

glMatrixMode(GL_COLOR_MATRIX): Apply a color matrix

across each pixel.

glBlendFunc: Modify blending to perform

multiplication or division.

glAccum: Use the accumilation buffer to tabulate

results.

There are many advantages to doing these calculations inside of the frame-

bu�er. Primarily, the graphics hardware can accelerate the simulation since

the host CPU doesn't need to be tied up. Furthermore, no extra rendering

time needs to be spent placing the data onto the screen since its already

15

present in the framebu�er. Since the hardware is already there to perform

these operations, why not use it?

9.2 Temperature Di�usion via Graphics Hardware

With the di�usion equation rewritten into matrix form, the temperature

calculation can be done through the graphics hardware. In the classical im-

plementation of the temperature di�usion model, the values are maintained

within the simulation code as well as drawing them onto the screen which ef-

fectively keeps two copies of the same data. With the hardware computation,

there is only a single copy of the data maintained within the framebu�er.

To calculate the temperature di�usion, the convolution �lter de�ned above

can be applied across all the values in the framebu�er using the graphics API

for the machine. For OpenGL, all convolution operations occur within pixel

transfer operations. The convolution �lter can be speci�ed with glConvolu-

tionFilter2D and the pixels copied from the front bu�er to the backbu�er.

Within the copy, the API applies the convolution to each pixel, placing the

resulting calculation into back bu�er. A swapbu�er call can then switch the

front and back bu�ers allowing for the calculation to repeat.

#define k .2

float filter[] = {

0.0, k , 0.0,

k , 1-4*k, k ,

0.0, k , 0.0};

glConvolutionFilter2D(filter);

glEnable(GL_CONVOLUTION);

glReadBuffer(GL_FRONT); // Read from the front

glDrawBuffer(GL_BACK); // Draw to the back

... Draw any initial conditions ...

glRasterPos(1,1);

while(1) {

glCopyPixels(0, 0, Width, Hieght, GL_COLOR);

glxSwapbuffers(dspy, wnd);

}

16

Figure 10: These results are taken from 500 iterations of the temperature di�usion model computed

three di�erent ways: (1) O2 Graphics (8 bits per channel) framebu�er calculation (2) Indigo2 framebu�er

(12 bits per channel) calculation (3) 16-bit software calculations. In this simulation, the limitations of

the 8 bit O2 framebu�er is quite apparent. The simulation stopped proceeding after 250 frames. The

O2 simulation took only 3 seconds to reach 500 frames, while the 16-bit software took over 15 seconds to

calculate and display.

This simple loop provides the same calculations as the classical calculation

however all of the computation is done through the hardware API. The initial

conditions are drawn to the screen through standard drawing commands and

all processing it handled through the glCopyPixels call.

9.3 Hardware Results

The primary di�erence in calculating through the framebu�er than through

standard code is that the size of the numbers representable is restricted by

the number of bits available within the framebu�er. Since the temperature is

represented as luminance, only the amount of bits available per color channel

can be used for the simulation. For the SGI O2, 8 bit color channels are the

largest available, which only allow values from 0 to 255.

Limitations Although the simulation of the temperature procedure much

faster in the framebu�er than using maintaining
oats for each pixel, the

limited range of framebu�er drastically limits the capabilities. In the exam-

ple of the cross, the simulation is limited since there is not enough bits for

an adequate number range. As a result, the simulation proceeds until the

convolution �lter produces results with the same value which was originally

present for all pixels. (See Figure 10)

These results were con�rmed when the classical simulation was done using

eight bit values to store the temperature values.

17

Furthermore, the speed of the calculations is dependent on what graph-

ics hardware is available on the system. In this example, although OpenGL

provide a hardware independent API, it does not guaranty hardware accel-

eration on all graphics calls. Using the pro�ling tools available on the SGIs,

pixie and prof, there were large parts of the caculations occurring on the

user CPU time for the O2. However, using the Maximum Impact graphics

system on the Indigo2, a signi�cant more of the calculation occurs within

the hardware which re
ects on faster calculation times even though there are

more bits per pixel and a slower CPU (R44000 vs R5000).

In general, calculating di�usion through the framebu�er was signi�cantly

faster than performing it in host memory and then drawing it to the screen.

The hardware limitations can restrict what can be done within the frame-

bu�er. The primary restriction is the 8-bit number representation available.

The next section explores ways to overcome this restriction by using the

entire RGBA channel as continuous bits to increase the size.

10 20-bit Framebu�er Math

One way to increase the capabilities of hardware simulation calculations is

to use the complete range of the hardware for the simulation. It temperature

di�usion model, all of the calculations were done with only a single color

channel. The calculations were easy to perform since most graphical opera-

tions treat the red, green, blue, and alpha channels independently in parallel

(blending for instance is separate for the RGBA channels but occurs all at

once with OpenGL).

To expand the model to use the RGBA channels as continuous bits, on

an 8-bit per channel system, it is possible to represent values with 32 bits,

or from 0 to 4.3 billion. With this amount of range, it is de�nately enough

granularity to perform an adequate simulation. The di�culty is to be perform

basic operations such as addition and multiplication through the graphics

API.

The immediate problem with using RGBA as continuous bits is that

the graphics API does not maintain a notion of carry out across the color

boundaries. For example, to do an addition we can turn on blending and set

the blending factors to one (glBlendFunc), and all rendering following will

be the simple addition of the color values. The problem is that any over
ow

within a color channel is not carried over to the next color, rather they are

18

Red Green Blue Alpha

7777
7777

777
777

7777
7777

7777777
7777777

Data Carry Space

08162431

Figure 11: Here is the breakup of the 20-bit number in the framebu�er. Each color channel maintains

a 4 bit bu�er to handle to carry bits manually. In the form shown here, the carry space is in the upper

bits so operations which result in over
ow can be handled. If subtraction or division were required, this

carry space would have to be shifted to the lower bits.

clamped to the maximum value.

Since the OpenGL API doesn't have any concept of carryout across color

channels within blending, over
ow and under
ow must be dealt with man-

ually. This is done by only using half of the bits per channel for carry and

the remaining bits for the data. This is so that multiplying two numbers

together there are enough bits available for the carry since multiplying two

4 bit numbers can result in at most an 8 bit number. In an 8-bit model, the

remainder bits must be the upper four bits for multiplication since the value

will be increasing producing over
ow. The opposite is true for division; the

remainder bits must be the lower four to handle the under
ow. Furthermore,

the extra remainder bits at the end of the number can be used for data since

there are no remaining channels for carry. This leaves a total of 20 bits for

computation, values ranging from 0 to 1.05 million. (See �gure 11.)

10.1 20-bit Operations

To perform division and multiplication, OpenGL blending can be con�gured

to do the required operation. The remainder is handled in four steps: get-

ting the remainder, carrying, adding, and clearing. First the remainders are

copied out of the results and placed into a separate space in the framebu�er.

This can be done with an logical mask operation which only takes the re-

mainder bits out of the color component (glLogicOp). The actual carry can

then be performed with a color matrix operation which maps the color red

channel to green, the green to blue, and the blue to alpha. This result can

then be added back to the original image with a bit shift to push the remain-

der bits up to the data bits. Finally, the remainder bits can be cleared with

a masking operation.

19

0347

8 4 2 1 1/2 1/4 1/8 1/16

Data Carry

Figure 12: With the data in the upper four bits while the carry is in the lower four, the number

representation is as shown is present after any divide or subtraction. The carry operation would normally

would transfer the lower bits to the upper bits of the next color channel. However with division, the

divisor must be placed on every channel. Since, this means that there is a restriction on the numbers

representable for the divisor. Even simple numbers like .2 cannot be represented (.1875 is the closest).

These calculation could be merged together since the graphics pipeline is

de�ned in a certain order. For example, the obtaining the remainder and the

carrying could be merged since the logical mask is separate from the color

matrix.

10.2 Limitations

With the increase in number representation, there becomes a problem with

the numbers available for multiplication and division. To do a multiplication

on the 20-bit number spread across the four 8-bit channels, we are restricted

to only being able to multiply and divide by 8-bit numbers. The reason for

this is that the multiplication/division operation is done through blending

and must be applied by each color channel. Since each channel is de�ned as

four bit integral and four bit fractional part (which is used as the remainder),

we can only divide by values ranging from 0 to 15.9375 (1111:11112). (See

Figure 12.)

Since we're so limited in range, the values of the constants within the

equation must be selected carefully to match the representable values for the

hardware.

10.3 Results

The bene�t of having a larger number representation is that it can signi�-

cantly improve the results of a physical simulation. Doing the temperature

di�usion model using 20-bit numbers, we were able to get a solution which

provided a 20 bit result, which was completely calculated through the frame-

bu�er. (See Figure 13.)

20

Figure 13: This image was created using the temperature dispersion model entirely implemented

through OpenGL commands. On the left is the 20-bit representation, on the right, the red channel which

is the most signi�cant byte is mapped to luminance. The middle region was used for performing the

calculation on the remainder.

11 Benchmarks

One of the interesting properties of doing these calculations through the

framebu�er and OpenGL is scalability. OpenGL provides a hardware inde-

pendent API which speci�es exactly what happens in the graphics pipeline

but doesn't place any restrictions on what must be accelerated through hard-

ware. As a result, there many variations of hardware accelerated graphics

available. Here are a few of the systems tested:

Test Case: 128x128 Temperature Di�usion.

Time for 500 di�usion frames.

Test Machine: SGI Indigo2 R4400 Maximum Impact

16-bit Software Calculation: 9.2 Seconds

12-bit Framebu�er Calculation: 2.84 Seconds (High Impact: 4.72)

20-bit Framebu�er Math: 31.7 Seconds

Test Machine: SGI O2 R5000

16-bit Software Calculation: 14.42 Seconds

8-bit Framebu�er Calculation: 2.86 Seconds

20-bit Framebu�er Math: 3 Minutes, 38 Seconds

The clearly show the di�erences in hardware acceleration. Placing the cal-

21

culation inside of the framebu�er de�antly improved performance. Even the

di�erence between the High and Maximum Impact graphics boards provides

twice the performance di�erence.

12 Hardware Fluid Calculation

All of these methods explored in this work is applicable to hardware calcu-

lation of build simulations. The most obvious example of this is the drag

component of the Navier-Stokes equations which is identical to the tempera-

ture di�usion expression. As shown above, this calculation can be performed

as a straightforward convolution. The convection terms requires multiplica-

tion which can be calculated through the 20-bit framebu�er math.

The mass conservation would bene�t the most from the framebu�er calcu-

lations since it requires a multipass operation. The gradient can be calculated

with a simple convolution and adding back in with blending. The only com-

plication in the model is that the gradient can be both negative and positive.

An attempt was made to implement the mass conservation through hardware

however there just wasn't enough accuracy in the 12-bits of the framebu�er

to get acceptable results. Hopefully with more advanced graphics hardware

advancements, this limitation will be lifted.

13 Discussion

A large part of this work is ahead of its time. Most of the graphics opera-

tions which were used within this work are currently considered extensions

of OpenGL and not available or accelerated on certain systems (like the O2).

In the next release of OpenGL, version 1.2, there will be a subsection which

includes imaging operations like convolution and color matrix.

Furthermore future hardware accelerated graphics board will have in-

creased pixel depth. Silicon Graphics is planing to release their latest graph-

ics board in 1999 which will represent color value with a
oating point format

with a mantissa and signi�cant. This could greatly improve the range of val-

ues supported inside the frame bu�er.

22

References

[1] Fostern, N., and Metaxas, D. (1997). Modeling the Motion of a Hot

Turbulent Gas. SIGGRAPH, 1997

[2] Verge, M.P., Causse, R., Hirschberg, A., (1995) A Physical Model of

Recorder-Like Instruments ICMC Proceedings, 1995

[3] Fostern, N., and Metaxas, D. Realistic Animation of Liquids University

of Pensylvania

[4] Fostern, N., and Metaxas, D. Controlling Fluid Animation University of

Pensylvania

[5] Stam, J., and Fiume, E. (1995) Depicting Fire and Other Gaseous Phe-

nomena Using Di�usion Processes. ACM-0-89791-701-4/95/008, 1995

[6] Gamito, M.N. Simulation of Turbulen Flow Using Vortex Particles. IN-

ESCA, 1994

[7] Yaeger, L., Upson, C., Meyers, R., Combining Physical and Visual Sim-

ulation: Creation of the Planet Jupiter for the Film 2010. SIGGRAPH

1986

23

