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Abstract

We introduce exotypes, user-defined types that combine the flexibil-
ity of meta-object protocols in dynamically-typed languages with
the performance control of low-level languages. Like objects in dy-
namic languages, exotypes are defined programmatically at run-
time, allowing behavior based on external data such as a database
schema. To achieve high performance, we use staged programming
to define the behavior of an exotype during a runtime compilation
step and implement exotypes in Terra, a low-level staged program-
ming language.

We show how exotype constructors compose, and use exotypes
to implement high-performance libraries for serialization, dynamic
assembly, automatic differentiation, and probabilistic program-
ming. Each exotype achieves expressiveness similar to libraries
written in dynamically-typed languages but implements optimiza-
tions that exceed the performance of existing libraries written in
low-level statically-typed languages. Though each implementation
is significantly shorter, our serialization library is 11 times faster
than Kryo, and our dynamic assembler is 3–20 times faster than
Google’s Chrome assembler.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors – Code Generation, Compilers

General Terms Design, Performance

Keywords Lua, Staged computation, DSL

1. Introduction

A language’s object representation and implementation has a sig-
nificant effect on both the concepts that can be easily expressed
and the ease of generating high-performance code. For instance,
Norvig [21] found that, of the 23 original design patterns proposed
by Gamma et al. [8], 16 became simpler or are implementable as
libraries using the built-in language features of Lisp or Dylan. One
reason is that many dynamic languages such as Lisp, Python, or
Lua support so-called meta-object protocols, meaning there is a
mechanism for the user to programmatically modify the semantics
and implementation of user-defined types [1, 14, 15]. Higher-level
policies such as inheritance or accessor permissions can be defined
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on top of these mechanisms, giving the programmer great flexibil-
ity in defining object behavior.

However, when an object’s behavior and in-memory represen-
tation are defined dynamically, it is difficult to perform some op-
timizations, resulting in performance losses. For instance, in Sec-
tion 4, we implement a microbenchmark of an Array object that for-
wards methods to each of its elements. The JIT-compiled Lua ver-
sion runs 18 times slower than equivalent C++ code due to object
boxing and dynamic dispatch. JIT compilers can optimize some
dynamic patterns [6, 13], but it is difficult to know if a pattern will
result in high-performance code.

In this work, we introduce exotypes as a way to achieve the ex-
pressiveness of dynamic languages while retaining the performance
of statically-typed objects. Exotypes combine meta-object proto-
cols with multi-stage programming to give the programmer more
control over the code’s performance. Rather than define an object’s
behavior as a function that is evaluated at runtime, an exotype de-
scribes the behavior with a function that is evaluated once during a
staged compilation step. These functions generate the code that im-
plements the behavior of the object in the next stage rather than im-
plementing the behavior directly. This design allows the program-
mer to optimize behavior and memory layout before any instances
of the object are used.

As a concrete example, consider joining two different employee
databases that both contain an “employee ID” field. To implement
the join efficiently in a low-level language, the structure of both
databases must be described in code beforehand. In a dynamic
language, the structure can be deduced at runtime by reading a
database schema, but the programmer has less control over the lay-
out of the objects. They may be boxed, adding an extra level of indi-
rection, and their fields may be stored in hash-tables rather than lin-
early in memory. With exotypes, the database structure can be read
at runtime while retaining a compact object layout. The first stage
of the program reads the database schema and generates exotypes
with fixed, compact data layouts. With the object layout known,
the second stage actually compiles and runs the join, exploiting the
compact layout of the generated types to store objects unboxed and
access them with simple pointer arithmetic.

We implement this approach by extending the object system of
the Terra language. Terra is a staged, low-level system program-
ming language similar to C that is embedded in Lua, a high-level
dynamically typed language [7]. Terra’s user-defined types are re-
placed with exotypes that are defined external to the Terra language
using a meta-object protocol based in Lua. Types are defined via
user-provided property functions that describe their behavior and
in-memory layout using multi-stage programming. Terra has a low
level of abstraction, so it is possible to control the performance of
the staged code. It is also a staged language, so new exotypes can be
defined dynamically over the course of the program. Higher-level
features, such as object serialization or polymorphic class systems,



can be built on top of these types. We present the following contri-
butions related to exotypes:

• We introduce the concept of an exotype and present a concrete
implementation in the Terra compiler based on programmatically-
defined properties queried during typechecking.

• We show that high-level type features such as type constructors
can be created with exotypes. When specified in a well-behaved
manner, independently-defined type constructors can be com-
posed.

• We evaluate the use of exotypes in several performance-critical
scenarios: serialization, dynamic assembly, automatic differen-
tiation, and probabilistic programming.

In the scenarios we evaluate, we show how we can achieve ex-
pressiveness similar to libraries written in dynamically-typed lan-
guages while matching the performance of existing implementa-
tions written in statically-typed languages. The added expressive-
ness makes it feasible to implement aggressive optimizations that
were not attempted in existing static languages. Our serialization li-
brary is 11 times faster than Kryo (a fast Java serialization library).
Our dynamic x86 assembler can assemble templates of assembly 3–
20 times faster than the assembler in Google Chrome, and our im-
plementation of a probabilistic programming language runs 5 times
faster than existing implementations.

2. Background

Meta-object protocols. Modern dynamic languages allow pro-
grammatic definition of object behavior. For instance, Python pro-
vides metaclasses which can override the default behaviors of
method definition and invocation, and CLOS allows for the dy-
namic specification of all behavior of objects using so-called meta-
object protocols [1, 15]. The Lua language uses a meta-object
protocol based on metatables to extend the normal semantics of
objects [14]. Metatables are Lua tables containing functions that
define new semantics for default behaviors. For instance, we can
change the behavior of the table indexing operator obj.field by
setting the __index field in a metatable:

local myobj = {}
setmetatable(myobj,

{ __index = function(self,field) return field end })
print(myobj.somefield) -- prints "somefield"

When the expression myobj.somefield is evaluated, the Lua inter-
preter will look for the key "somefield" in the myobj table. If the key
does not exist, it will instead call the __index function of myobj’s
metatable passing the object and the missing key as arguments and
returning the result as the value of the original expression. Metata-
bles also contain other functions that similarly define other behav-
iors such as function application and arithmetic operators.

We use a meta-object protocol defined using Lua tables to de-
scribe the behavior of exotypes. However, the behaviors in exotypes
are expressed using staged programming and queried before code
that uses the objects is compiled. While most meta-object protocols
are applied dynamically, some, such as those in Open-C++, are ap-
plied statically during compilation [3]. In these systems, no new
types are defined at runtime. Exotypes blend the two approaches.
New types can be created and compiled as the program runs, but
since exotype behavior is described with staged programming of
a low-level language (Terra), the programmer retains control over
low-level representation and implementation.

Multi-stage programming. Our implementation of exotypes re-
lies on multi-stage programming (MSP) to dynamically generate
expressions that implement object behavior. MSP as described by
Taha and Sheard allows the programmer to separate a program into

multiple phases using explicit program annotations [29]. This de-
sign can be viewed as an abstraction over code generation and com-
pilation. An earlier stage of the program can generate and com-
pile code that runs at a later stage. By explicitly representing these
compilation steps, MSP gives the programmer precise control over
generated code and allows code generation to be based on dynamic
information.

Our implementation builds on the Terra language, a staged pro-
gramming language embedded in Lua and designed for generating
high-performance code [7]. Lua is used for constructing Terra pro-
grams and writing high-level program transformations. Terra is a
low-level language with semantics and types similar to C. Since it
has a low level of abstraction, it is relatively easy to reason about
and tune the performance of generated Terra code.

A Terra function is defined in Lua code using the terra keyword
(in Lua, a function is normally created using function). A Terra
function can be called directly from Lua:

terra powf(v : double, N : int)
var r = 1.0
for i = 0,N do r = r * v end
return r

5 end
powf(2,3) --terra function called from Lua

Staged programming in Lua and Terra involves two phases
of meta-programming. First, untyped Terra expressions are con-
structed using quotations and stitched together using escapes in a
process we call specialization. Second, type-level computation can
be carried out during typechecking with user-defined type-macros,
which we will use to implement exotypes. The interaction between
these phases is summarized in Figure 1 (left).

A quotation (the backtick operator 8
exp, or the block structured

quote <exps> end) used in Lua code creates an unevaluated Terra
expression, and an escape (the bracket operator [lua_exp]) used
in Terra code evaluates lua_exp and splices its result (normally a
Terra quotation) into the surrounding Terra code. Consider how to
use these operators to generate a specialized version of powf for a
particular value of N:

function genpowf(N)
local function genexp(vr)

local r =
8
1.0

for i = 1,N do r =
8
([r] * [vr]) end

5 return r
end
local terra powfN(v : double)

return [genexp(
8
v)]

end
10 return powfN

end
pow2 = genpowf(2)
print(pow2(3)) -- ’9’

We begin by evaluating Lua expressions, invoking genpowf(2),
which defines genexp and then defines the Terra function powfN.
When a Terra function or quotation is defined, it is specialized in
the local environment. Specialization resolves the escaped Lua ex-
pressions by calling back into Lua evaluation, splicing the result-
ing values into the Terra code. In powfN, it evaluates the escaped
call to genexp, which will generate the body of powfN. The loop on
line 4 alternates between defining a Terra quotation 8

([r] * [v]),
and specializing it with values of the Lua variables r and vr. Here
r holds the power expression being built 8

1.0*v*..., while vr is a
quotation of a variable that refers to parameter v of powfN. The re-
sult of the loop is the Terra quotation 8

1.0 * v * v, which will be
spliced into the body of powfN, completing its specialization.

When a Terra function is first called, such as pow2 on line 13, it is
typechecked and compiled, producing machine code. The function
is then evaluated computing the result 9.

To support our implementation of exotypes, we use an addi-
tional operator, the type macro that allows for user-defined behav-
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Property Queries (evaluated in Lua):

Figure 1. Phases of evaluation of a Lua-Terra program with exotypes (left), and an example of the typechecking process for the Student2

exotype (right). New interactions used to implement exotypes are highlighted in red.

ior during typechecking. These macros can be used in Terra code
like a function, but they are evaluated when the Terra code is type-
checked. Unlike escapes and quotes, which are used to create and
stitch code together before typechecking, type macros have access
to their arguments’ types, and are used to generate behavior based
on the types as shown in this example:

printnum = macro(function(num)
local format
if num:gettype() == float then

format = "%f"
5 else

format = "%d"
end

return
8
C.printf([format],[num])

end)
10 terra printint(a : int) printnum(a) end

printint(1)

When printint is first called on line 11, it will be typechecked.
When typechecking the call printnum(a), the typechecker will in-
voke the printnum macro, which examines the type of the argument
num to generate the appropriate formatting code for the type.

3. Exotypes Interface

We define an exotype as a tuple of functions which will be called
during typechecking to define the layout and behavior of a user-
defined type:

(()→ MemoryLayout) ∗ (Op0 → Quote) ∗ ... ∗ (Opn → Quote)

The first function computes the in-memory layout of a type, which
is specified with MemoryLayout. The remaining functions describe
the semantics of the type when it appears in a primitive operation of
the language such as a method invocation, binary operator, or cast.
Given an instance of a primitive operation (Opi), the corresponding
function returns a Quote, a concrete expression that implements the
instance. These functions are evaluated by the typechecker when-
ever it encounters an operation on an exotype and may reference
and modify program state. We call these functions property func-
tions and the results of these functions properties of the type.

In the remainder of this section, we discuss an implementation
of exotypes that uses Lua to define types in Terra, and type macros
to define the type’s behavior. In this implementation, exotypes are
the only mechanism for creating user-defined Terra types. Terra’s

struct syntax to define types is implemented via desugaring to
exotypes. An exotype is created via an API call in Lua:

Student = terralib.types.newstruct()

Property functions are defined in the type’s metamethods table. The
in-memory layout of a type is specified with __getentries. For
instance, the Student type can be defined to have two fields – a
name and a class year:

Student.metamethods.__getentries = function()
return { {field = "name", type = rawstring },

{field = "year", type = int} }
end

Since properties are defined programmatically, we are not lim-
ited to explicitly enumerated entries. A type can define its layout
by querying the layout of another type or accessing external in-
formation. For example, we define Student2 by reading a comma-
separated value file of student data and inferring the type of the
fields from the data:

Student2.metamethods.__getentries = function()
local file = io.open("data.csv","r") --e.g. name,year
local titles = split(",",file:read("*line"))
local data = split(",",file:read("*line"))

5 local entries = {}
for i,field in ipairs(titles) do --loop over entries in titles

--is the data a string or an integer?
local type = tonumber(data[i]) and int or rawstring
entries[i] = { field = field, type = type}

10 end
return entries

end

To keep code concise, we include simple default implementations.
For __getentries in type T, we return T.entries, which is automat-
ically populated by Terra’s struct statement:

struct Student3 { name : rawstring, year : int }

Semantics are also specified with property functions in the
metamethods table. When a method is invoked on an instance of
type T (e.g., t:mymethod(arg)), the implementation of the method
is defined using the __getmethod property of type T. By default
it looks up the method in the table T.methods. But if the method
being invoked does not exist, it will query the __methodmissing

property. Here is an example of using methods with the Student2



PROPERTY OPERATION

__getentries() Defines the in-memory repre-

sentation of T as a list of named fields.

obj.myfield

__getmethod(name) Gets the static implemen-

tation of name for type T.

obj:mymethod()

__add(lhs,rhs) Defines the behavior of the +

operator on the object (lhs or rhs has type T).

obj + 1

__cast(from,to,exp) Defines how to convert

expression exp of type from to type to.

[int](obj)

__apply(arg1,...,argN) Defines how to apply

an instance of T to a list of arguments.

obj(1.0, true)

Table 1. A selection of exotype properties and example operations
that cause the type checker to invoke them.

type, in which we use the __methodmissing property to create setter
methods (e.g., setname) for each field.

Student2.methods.print = terra(self : &Student2)
C.printf("%s in year %d\n",self.name,self.year)

end
Student2.metamethods.__methodmissing = macro(function(name,self,arg)

5 local field = string.match(name,"set(.*)")
if field then

return quote self.[field] = arg end
end
error("unknown method: "..name)

10 end)

The typechecking process for example code that uses Student2

is illustrated in Figure 1 (right). When the typechecker sees an
instantiation of the type, it queries __getentries to get its memory
layout. For Student2 this will load the data.csv file to determine
the layout. If the typechecker sees a call to method like setname

which is not in Student2.methods, then the __getmethod property
will query the __methodmissing property for its behavior. Since
__methodmissing is defined as a type macro, it will be evaluated
during the typechecking process to produce a Terra quotation that
implements the behavior.

Other properties define the behaviors for built-in operators
(e.g. __add for +), and how to convert between user-defined types
(__cast). Table 1 lists some common properties and the operations
they define.

Defining behavior programmatically allows generic behaviors
to be expressed concisely. For instance, we can interface with
externally-defined class systems. Objective-C is an extension to C
that adds objects similar in behavior to Smalltalk. We can embed
Objective-C objects by creating an exotype ObjC wrapper:

C = terralib.includec("objc/message.h") --include ObjC runtime
struct ObjC { handle : &C.objc_object } --define wrapper for ObjC types
ObjC.metamethods.__methodmissing = macro(function(sel,obj,...)

local arguments = {...}
5 local sel = C.sel_registerName(sanitizeSelector(sel,#arguments))

--generate expression to implement method call ’sel’

return
8
ObjC { C.objc_msgSend([obj].handle,[sel],[arguments]) }

end)

When the typechecker sees a method called on an ObjC object (e.g.
obj:init(1)), its __methodmissing property will insert code to call
the Objective-C runtime API, e.g:

C.objc_msgSend(obj.handle,init_name,1)

Staging of properties gives the programmer control over the
performance of the type. Since behavior can be defined in type
macros that are evaluated during typechecking, information known
statically can be pre-computed. In the ObjC type, the method name

sel is known during typechecking, so we can pre-compute the
Objective-C method selector (line 5), which makes the expression
executed at runtime (line 7) faster.

Furthermore, __getentries provides low-level control of the
memory layout of a type similar to that of C structs. Types are laid
out linearly by default and can also be overlapped in unions. This
control allows __getentries to describe more efficient memory lay-
outs. We implemented Student objects individually, as if they were
entries in a row-oriented database. But we can change __getentries

to store students as entries in a column-oriented database which
may be more efficient.

4. Example: Array(T)

Exotypes allow us to express the generic behavior of objects in a
way similar to meta-object protocols in dynamic languages while
still achieving the the performance of low-level languages. Con-
sider how to represent the type constructor Array(·), which takes a
type T and produces a new type, Array(T), that holds a collection
of Ts. In addition, for each method m of T, Array(T) has its own
method m that invokes the original m on each member of the array.
This is a Proxy design pattern [8], where methods on one object
are forwarded to methods on another. This specification is differ-
ent from that in most functional languages, where this behavior is
implemented as a higher-order map function, but is widely used in
array-based languages such as APL and R to concisely operate on
collections.

Proxy patterns are difficult to express generically in many mod-
ern languages. Despite the fact that proxies are a common pattern in
object-oriented computing, programmers using C++ or Java must
duplicate the method names of the object in the proxy. Some lan-
guages have added more advanced features to support proxies and
other design patterns. For instance, Hannemann and Kiczales show
that AspectJ can automate some aspects of proxies, but not in a
way that is generically reusable [12]. Expressing proxies in Scala
requires the use of advanced features such as its macro facilities
and Dynamic type trait that were only added in version 2.10 of the
language [2].

In contrast, proxies are relatively easy to implement in dynamic
languages. As an example, Array(·) can be implemented concisely
using metatables in Lua:

local function createmethod(self,methodname)
local impl = function(self,...)

for i,element in ipairs(self.data) do
element[methodname](element,...)

5 end
end
self[methodname] = impl --cache result
return impl

end
10 local function createarray()

local arr = {data = terralib.newlist()}
return setmetatable(arr, { __index = createmethod })

end

When a missing method on an array is referenced, the metatable’s
__index field (line 12) causes createmethod to be called, which
generates an implementation for the method (line 2) that loops over
the objects in the array forwarding the method call to each.

While simple, it is hard to control the performance of the object.
Methods are looked up dynamically on each object in the array. The
objects themselves are boxed, limiting memory locality. We imple-
mented a micro-benchmark that invoked a simple counter function
on each member of an array object and evaluated it using LuaJIT, a
state-of-the-art tracing JIT [23]. Despite tracing and compiling the
loop, it still performs 18 times slower than hand-written C++ that
implements the proxy by hand due to the overhead of guards and
unboxing of objects.



With exotypes, we can specify Array(·) almost as concisely as
the Lua code, but staging of its behavior and layout allows us to
remove the inefficiencies:

Array = memoize(function(T)
local struct ArrayImpl {

data : &T,
N : int

5 }
ArrayImpl.metamethods.__methodmissing =
macro(function(methodname,selfexp,...)

local args = terralib.newlist {...}
return quote

10 var self = selfexp
for i = 0,self.N do

self.data[i]:[methodname]([args])
end

end
15 end)

--other implementation like :init()
return ArrayImpl

end)

The __methodmissing type macro performs a similar purpose to the
createmethod function in the Lua example. It generates the code
that loops over elements of the array and forwards the method call,
but it does so during typechecking rather than evaluation. Further-
more, the declaration of ArrayImpl provides a concrete layout for
the type before it is compiled.

Since the layout of ArrayImpl is described before compilation,
we can store the array’s T objects unboxed rather than as an array of
pointers. Furthermore, the forwarded calls to methodname on line 9
are resolved at compile time and inlined. In our micro-benchmark,
this staging allowed us to generically generate the same code as the
hand-written C++ proxy, and run at the same speed.

5. Composability

It is possible to apply type constructors such as Array(·) to other
programmatically-defined exotypes. To support composability, we
allow an implementation of an exotype to query the properties
of other exotypes. However, type hierarchies are often recursive,
making it possible for two types to mutually depend on properties
of the other. Consider the following Tree type:

struct Tree { data : int, children : Array(Tree) }
Tree.methods.print = terra(self : &Tree) : {}

print(self.data)
self.children:print()

5 end

The type Tree contains a type Array(Tree) that is defined pro-
grammatically with the Array(·) function using Tree itself as an
argument. The in-memory layout of Tree depends on the layout of
Array(Tree). Similarly, the method print of Array(Tree) depends
on the method print in Tree. (The layout of Array(Tree) does not
depend on Tree, since it only stores a pointer to it.)

Since the dependencies are for different properties, there is no
actual circular dependence between the types. The required type
information can be determined from the specification in steps. First,
the in-memory layout is determined for Array(Tree) and then Tree,
then the two methods are defined, first print for Tree and finally
print for Array(Tree).

The layout and method definitions of Array(Tree) and Tree must
be interleaved to avoid causing a cyclic dependence. In recursive
cases similar to this example, eagerly defining all the properties of
one type before another can introduce a false dependency. How-
ever, interleaving the definition of Array(Tree) and Tree makes it
impossible to define a single type constructor function Array(·)
that completely defines the properties of a new type. These type-
constructors are desirable because they can be provided as libraries
and composed with other exotypes without requiring the caller to
understand the specific implementation.

Our interface to exotypes resolves this problem by defining each
property separately as a lazily evaluated function. The compiler
queries an individual property of a type only when it is needed
during typechecking. Evaluating properties separately and lazily
allows the compiler to interleave property queries from different
types while allowing them to be specified entirely for one type in
a single function. Since typechecking and compilation of functions
are also performed lazily, type properties are not requested earlier
than needed.

In the original publication on Terra [7] types were described
using eagerly built tables that specified the layout and methods,
in addition to ad-hoc user-defined callbacks invoked by the type-
checker. Our experience with issues causing subtle cycles while
building type constructors such as Array(·) led us to replace this
design with exotypes based on lazily queried properties.

Lazily queried properties also make it possible to create types
that have an unbounded number of behaviors. For instance, the
Objective-C wrapper object presented previously can respond to
an unlimited number of messages. Despite being unbounded, these
methods can compose with other type constructors. For instance, it
is possible to make an Array(ObjC) that stores OS windows and call
windows:makeKeyAndOrderFront(nil) to focus them. In this case, the
method makeKeyAndOrderFront is requested by the typechecker via
the __getmethod property of Array(ObjC), which will in turn query
the __getmethod property of ObjC to generate the method call. If
Array required all methods to be available up-front, these two types
would not compose.

6. Formalization of Properties

Exotype property functions can directly query properties of other
exotypes. Properties are also queried indirectly by generated code.
For instance, Array(ObjC) generates code that calls a method on
ObjC, querying its __getmethod property. It is possible for an exo-
type to request a property resulting in true cyclic property lookups.
In this case, our system emits an error.1 Furthermore, properties are
arbitrary programs, so they are not guaranteed to terminate and may
have other undesirable behaviors.

To discuss some constraints that make properties well-behaved
we formally define the typechecking and property evaluation pro-
cess for exotypes in Terra. We also examine the consequences of
relaxing these constraints to make exotypes more flexible.

Terra is evaluated in multiple phases. To keep our formalization
of exotypes simple, we focus on the typechecking and evaluation of
Terra code with exotype property queries. In particular, we omit the
machinery for quotes, escapes, and specialization used to generate
Terra code, which can be found in previous work [7], and assume
that an environment P that holds a mapping between exotypes and
their properties is already constructed. This environment would
normally be created in Lua by API calls that create types and set
entries in their metamethods table.

We model the Terra language with exotypes (ExoTerra) as the
typed lambda calculus:

.
e ::= λ

.
x : T.

.
e |

.
x |

.
e

.
e | cInt | ct

.
e | unwrap

.
e

T ::= Int | T→ T | t
.
v ::= cInt | λ

.
x : T.

.
e | ct

.
v

Types are either a base type Int, a function T → T, or an exotype
represented by a type identifier t. An exotype constructor (ct

.
e)

takes an expression
.
e to initialize the internal value of the exotype,

and unwrap
.
e retrieves the internal value. The environment P holds

a mapping from an exotype t to its property lookup function,
P(t) = λx.e. In real Terra, each property is a different function, but

1 Other behavior is possible. A recursively requested property could initially
return the value⊤ and iterate property lookup until a fixed point is reached.
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.
e

.
e′ : T′′

(TYEXOAPP)

Figure 2. Typing rules, P Γ ⊢
.
e : T, for ExoTerra expressions.

⊢′ refers to the same rules but with TYEXOAPP removed.
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.
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Figure 3. Rules, P
.
e −→T P

.
e
′

, for evaluating ExoTerra expres-
sions.

C ::= • | C e | v C | prop v0...vi−1 C ei+1...en | runprop S C

C′ ::= • | C′ e | v C′ | prop v0...vi−1 C′ ei+1...en

P e −→L P e′

P C[e] −→L P C[e′]
(LCTX)

C 6= •

P C[error] −→L P error

(LERROR)

P (λx.e) v −→L P e[v/x]
(LAPP)

P runprop S v −→L P v

(LRUNPROP)

(v0, ..., vn) ∈ S

P runprop S C′[prop v0...vn] −→L P error
(LPROPCYCLE)

(t, v1, ..., vn) 6∈ S P(t) = λx.e

P runprop S C′[prop t v1...vn] −→L

P runprop S C′[runprop (S ∪ {(t, v1, ..., vn)}) ((λx.e) v1...vn)]
(LPROP)

Figure 4. The rules, P e −→L P e
′, for evaluating ExoLua.

this is only for convenience. In our formalism, the kind of property
is passed as an argument. The property lookup functions are written
in ExoLua, based on the untyped lambda calculus:

v ::= T | λx.e |
.
e

e ::= v | e e | x | error | prop e0 ... en | runprop S e

ExoTerra types (T) and expressions (
.
e) are values in ExoLua so

that they can be returned from property queries. An exception
expression, error, models the errors that occur when we find a
cyclic property query. The prop form is used to query a property
of a type. Its first argument e0 should evaluate to an exotype
identifier t, and e1...en are additional arguments describing the
query. Properties are evaluated in the context of querying other
properties. This evaluation is formalized with the runprop S e

expression, which evaluates a property lookup expression e in
the context S, where S is a set of properties. Each property in S

is already being queried when e is requested, and has the form
(v0, ..., vn).

The rules for typechecking ExoTerra are shown in Figure 2.
Rule TYCTOR illustrates how the typechecking process queries the
property function to retrieve information about the type. In particu-
lar, TYCTOR asks the property function for the type of the concrete
value that will represent the exotype, and makes sure it matches the
type of the expression used to initialize it. Rule TYEXOAPP shows
how a property function defines the behavior of an exotype when
it is applied like a function. It queries the exotype for its behavior
when applied to a value of type T′ (runprop ∅ prop λx.e apply T′).
This query should produce an implementation of behavior in the
form of a function (

.
e
′′). This function takes the exotype

.
e and the

argument
.
e
′ to compute the value of the expression. We check

.
e
′′

with modified typing rules ⊢′ which omit TYEXOAPP. This change
prevents the implementation

.
e
′′ of an exotype from relying on ex-

otype behavior itself, which can prevent typechecking from termi-
nating if, for instance, a query about exotype application included
the same application in its implementation. This behavior does not
restrict what implementations can be expressed, since the property
generating the implementation function can query exotypes for the
appropriate behavior. Rules for evaluating ExoTerra are presented
in Figure 3 and show how the results of property queries will be
applied to evaluate Terra code.

The rules for evaluating ExoLua are shown in Figure 4. Ex-
ceptions abort the computation (LERROR). The rules LPROP and
LPROPCYCLE perform property queries. A property is computed
as the nested application v0...vn, where v0 is the property lookup
function for type t. We say that the tuple (t, v1, ..., vn) is the prop-
erty being queried. For example, the expression P(t) apply T is a
query of the (t, apply, T) property. Property statements (prop) can
only step inside of a runprop rule which specifies the set S of active
property lookups. If the same property is already being queried, it
is in set S and will evaluate to error (rule LPROPCYCLE), oth-
erwise the property will be evaluated in a new runprop context
that records the fact that the property is currently being queried
(rule LPROP). The values in property queries can be functions; for
the purposes of S, we consider two lambda terms equal if they are
equivalent up to alpha conversion. Given this formalization, we can
define sufficient conditions to ensure that a property lookup during
typechecking will terminate:

• Individual termination. A property evaluation e in a program
P C[runprop S e] reduces to P C[v] or P error assuming
that all of the subsequent property evaluations that it evaluates
(P C[runprop S C′[prop v

′

0, ...v
′

n]]) also reduce to values
(P C[runprop S C′[v′]]) or P error.

• Closed universe. There exist a finite number N of unique prop-
erties of the form (v0, ..., vm) that can be queried.



Theorem Assuming individual termination and closed universe,
a property lookup runprop ∅ e will terminate with a value v or
error.

The proof uses the fact that there is a bounded set of properties
to show that a program will eventually terminate or reach a cycle.
Lemma Let En be a property lookup evaluation with individ-
ual termination, P C[runprop Sn e], that does not terminate, and
|Sn| = n . Then En reduces to a property lookup En −→∗

L En+1,
with En+1 = P C[runprop Sn C′[runprop Sn+1 e]] and
|Sn+1| = n + 1. Proof: from individual termination, there must
exist a sequence of steps En −→∗

L En+1, where En+1 =
P C[runprop Sn C′[prop v0...vm]] and En+1 does not terminate.
Furthermore, the only rule that applies to En+1 is LPROP, since
LPROPCYCLE terminates with an error. Hence,
En+1 −→L P C[runprop Sn C′[runprop Sn+1 λx.e v1...vm]],
where Sn+1 = Sn ∪ {(v0, ..., vm)}. From LPROP we know that
the new property was not already in Sn, so |Sn+1| = n+ 1.
Proof of Theorem Assume a property lookup P runprop ∅ e does
not terminate. By induction using the Lemma, evaluation will step
to a property lookup EN+1 with |SN+1| = N+1 active properties.
However, this contradicts the closed universe assumption, since
there are at most N properties that can be queried.

Removing either of these conditions allows properties to run
forever. If we remove individual termination then it is possible
that an individual property lookup function will not terminate.
We expect programmers can debug issues that arise from non-
termination within a single property.

If we remove closed universe, it also possible to run forever.
Consider a __getmethod property that, for each method m, appends
the string "foo" to m and tries to call this new method on itself. This
property will not terminate because the property being requested
at each depth is different from the previous properties. In our
implementation, we track which properties are being queried and
throw an exception when a cycle is found. However, in cases such
as __getmethod, there are an unbounded number of possible method
names, so some property lookups may not terminate. In practice,
we cap the depth of property lookup and report a trace of property
requests when the limit is reached to ensure termination.

The semantics of property lookup suggest a few design princi-
ples to ensure properties functions are composable. First, though
Lua is not a purely functional language, property lookup functions
should be written in a functional style. The semantics show that
in some cases such as TYCTOR and TYUNWRAP, the same prop-
erty will be evaluated multiple times. Furthermore, typechecking
occurs when a function is first used, so the order in which type
properties are evaluated is determined dynamically. Since the for-
mal languages are functional, they will always produce the same
result regardless of when they are evaluated. In our actual imple-
mentation where side effects are possible, we memoize property
queries to guarantee the same result. Since the writer of a property
does not control when it is queried, it is a good idea to write prop-
erty functions so that they will produce the same result regardless
of when they are evaluated.

Furthermore, it is important to avoid creating cyclic property
queries. It is sometimes convenient to calculate a group of proper-
ties (e.g. all methods of a type) at once during a property lookup.
This approach is problematic, since querying additional properties
can cause additional cycles. Consider an analogous case when type-
checking the exotype constructor P ct11, with the following prop-
erty lookup functions:

P(t1) = λxname.prop t2 xname

P(t2) = λxname.first Int (prop t1 xname)

where first = λx1.λx2.x1

t1 will forward its property query to t2. t2 will first query the
same property on t1, discard the result, and return Int. This evalu-

ation would cause a cycle on (t1, layout) that could be avoided if
t2 only queried properties it needed. This example suggests that a
property should only query other properties when they are needed
to calculate the result of the original query. Querying other proper-
ties only when needed and writing properties in a functional style
ensures that property queries are as composable as possible.

7. Examples and Evaluation

To evaluate the expressiveness and performance of libraries built
with exotypes, we have implemented example solutions for several
domains where performance is critical. In each scenario, we show
how exotypes can express a solution similar to those written in
dynamic languages with meta-object protocols while matching the
performance of existing state-of-the-art implementations written in
C++ or Java. In some cases, the added expressiveness enables more
aggressive optimizations, allowing our implementations to exceed
the performance of existing libraries.

Evaluation was performed on an Intel Core i7-3720QM with
16GB of RAM running OS X 10.8.5. Our implementation of ex-
otypes was built by modifying the original Terra typechecker to
make user-defined property queries while tracking cyclic property
lookups. Lua’s protected call mechanism was used to recover from
and report any errors in user-defined properties.

7.1 Serialization

Fast serialization is necessary for implementing high-performance
distributed systems. Writing robust and efficient serialization li-
braries is difficult because different use-cases often demand dif-
ferent features, impacting the set of implementations and optimiza-
tions that can be used. Design choices include binary vs. text en-
codings, the presence of type and versioning annotations, whether
complete object graphs need to be serialized, and many other con-
siderations.

One solution is to provide robust libraries that attempt to ad-
dress every possibility. Google’s Protocol Buffers provide cross-
language data-description and versioning [11]. Java includes a
built-in library for serialization that can serialize entire object
graphs and ensure type safety [22]. To optimize performance, some
libraries such as the Kryo library for Java generate specialized seri-
alization code for each type ahead-of-time [26]. The robust features
in these libraries often make them difficult to customize, which
is unfortunate, since advanced features such as supporting object
graphs can incur runtime overhead.

Using exotypes, we can create custom serialization libraries
that are generic (work on arbitrary types) and efficient (code to
serialize each object is precompiled) with very little code. We focus
on the example of serializing 3D scene data from an interactive
scene editor connected to a storage server. Scenes are trees, so the
serializer must recursively serialize sub-trees but need not handle
generic graphs. Tree nodes contain a mixture of numeric and string
data. The server and client exchange a binary representation of
scene data.

We created a generic exotype suited to serialize this kind of
data. It responds to two polymorphic methods write and read. A
partial list of the code for the implementation of write is shown
in Figure 5, focusing on serialization of structs (other exotypes).
Code is generated for each type seen in the object tree. For struct
objects, it queries the layout of the struct to generate code for each
of the entries.

Performance for a 1.28MB scene is shown in Figure 6. We com-
pare against Java’s native serialization, the state-of-the-art Kryo li-
brary, and Google’s C++ implementation of protocol buffers. Ob-
jects were serialized to a pre-allocated buffer in memory so that
the benchmark would capture encoding time rather than buffer
allocation/resizing time. For Java implementations, the JIT was



createwrite = memoize(function(T)
if T:isstruct() then
local function emitPointers(self,obj)

local stmts = {}
5 local function addEntry(elemtype,elemexp)

if elemtype:ispointer() then
local fn = createwrite(elemtype.type)
table.insert(stmts,quote fn(self,elemexp) end)

elseif elemtype:isstruct() then
10 local entries = elemtype:getentries()

for _,e in ipairs(entries) do

addEntry(e.type,
8
elemexp.[e.field])

end end end
addEntry(T,obj)

15 return stmts
end
local terra write(self : &Serializer, obj : &T)

self:writebytes([&uint8](obj),sizeof(T))
[emitPointers(self,obj)]

20 end
return write

elseif T:isarray() then ...)

Figure 5. Implementation of a generic serializer, focusing on code
for serializing aggregate types.

THROUGHPUT OF SERIALIZATION LIBRARIES

0 2000 4000 6000

Encoding Throughput (MB/s)

Java

Protobuf 
(c++)

Terra
Baseline

+ write opt.
+ fusion opt.

Built-in
Kryo

Baseline
Pre-staged

Figure 6. Throughput of scene graph serialization. Our specialized
exotype implementation performs an order of magnitude faster.

warmed up by serializing the entire scene 250 times before timing.
For Kryo, classes were pre-registered, support for object graphs
was disabled, and UnsafeMemoryOutput was used to increase per-
formance.

Our baseline implementation can serialize input data at 627
MB/s, which is comparable to Kryo’s 432 MB/s. This is expected
since both libraries take the same approach, pre-generating code
to serialize each object up front. The Java serializer performs sub-
stantially worse (107MB/s) since it interprets the structure of each
object during serialization.

Given a specific use-case, we can apply more aggressive opti-
mizations. Our baseline implementation calls a user-provided func-
tion pointer to write data. We can turn our serialization type into a
type-constructor that takes the write function as an argument. This
change (write opt.) allows inlining calls to the write function, in-
creasing performance to 2.37 GB/s. Our baseline implementation
also writes each element of a struct individually, allowing for cus-
tomized writers for specific objects. However, in this example, no
custom writers are needed, so the library can apply aggressive fu-
sion to the writes. Rather than copy each struct element individu-
ally, it copies the entire struct at once. Any objects pointed to by
elements of the struct are then written afterward. Using vectoriza-
tion, these larger copies are efficient, increasing the performance to
7.00GB/s (fusion opt.) or 11 times faster than Kryo. As an upper
bound on performance, simply copying 1.28MB runs at 15GB/s.

Protocol buffers use a different approach, requiring the user to
translate an object into its own object hierarchy before serialization.
This translation step limits performance to 124MB/s. Serializing
the protocol buffer objects directly runs at 1.5GB/s (pre-staged),
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Figure 7. Throughput of assembler. Benchmarks are ordered by
increasing template size. Larger template sizes increase the effect
of the Terra assembler’s fusion optimization.

but doing so is not always possible since it prevents the programmer
from using their own object hierarchies in the rest of the program.

The combination of staged programming and meta-object pro-
tocol makes the expression of this custom serializer concise. In the
full Terra implementation, the code to implement both serialization
and deserialization is less than 200 lines. At this size, it is feasible
for a programmer to modify it to fit different serialization cases,
something that is not as feasible with much larger serialization li-
braries such as Kryo or protocol buffers which each contain several
thousand lines of code.

7.2 Dynamic x86 Assembly

Dynamic assemblers form the basis of JIT compilers. Unlike nor-
mal assemblers which run during compilation, dynamic assemblers
are used at runtime to dynamically generate code. A JIT compiler
uses the assembler to translate its own intermediates into executable
machine code. Higher-level JIT-compiled languages may emit tem-
plates of x86 assembly that correspond to a single high-level in-
struction. For instance the Riposte JIT [30] for vector code in R
uses the following template to emit a vector gather:

void emitGather(Assembler &a,
XMMRegister RegR, XMMRegister RegA, int disp) {

a.movq(r8, RegA); a.movhlps(RegR, RegA); a.movq(r9, RegR);
a.movlpd(RegR,Operand(r12,r8,times_8,disp));

5 a.movhpd(RegR,Operand(r12,r9,times_8,disp));
}

The gather takes 2 addresses in RegA and then loads the two values
in RegR, requiring 5 instructions total.

The performance of a JIT depends on compilation speed, so it
is important for the Assembler type to be efficient. Riposte uses the
assembler used in Google Chrome [10] to get high performance.
To ensure speed, each instruction is explicitly implemented as
a method on the assembler object. As an example, here is the
implementation of the movlpd instruction:

void Assembler::movlpd(XMMRegister dst,
const Operand& src) {

EnsureSpace ensure_space(this);
emit(0x66); emit_rex_64(dst, src);

5 emit(0x0F); emit(0x12); // load
emit_sse_operand(dst, src);

}

This approach is able to produce code that can assemble x86 in-
structions at the rate of 720 MB/s of instructions. While fast, writ-
ing the implementation of each of these functions is tedious and
prone to error. There are hundreds of x86 instructions, many with
multiple versions.



Another approach is to describe the instruction concisely in a
small language, similar to how string matching can be encoded
with regular expressions. LuaJIT’s DynAsm library [23] takes this
approach to describe the movlpd instruction in a table:

movlpd_2 = "rx/oq:660F12rM|xr/qo:n660F13Rm"

Each line describes the valid arguments ("rx"), their sizes ("oq"),
and a recipe to encode the instruction (":66..."), listing multiple
variants per line. When instructions share a similar form (e.g. add
and sub), meta-programming is used to generate the table entries.

While these tables are concise, interpreting the table to encode
instructions incurs substantial overhead. A micro-benchmark using
this table directly encodes at only 336KB/s, three orders of mag-
nitude slower. To get high-performance, DynAsm pre-compiles the
table into fast code using a source-to-source translation of C code.
It is designed to optimize code size rather than speed, encoding the
gather code at 168MB/s but using only 30 bytes to represent it.

We can use exotypes to perform this transformation directly
in the object system of Terra without the need for preprocessors.
Instead of optimizing for code size like DynAsm, we optimize
for encoding speed. Our implementation uses the __methodmissing

property to compile assembly functions on demand. For instance, a
user may write:

A:movlpd(RegR,index(r12,r8,8,disp,"qword"))

This will invoke __methodmissing for the movlpd instruction. The
implementation will then examine the encoding table (adapted
from DynAsm) to produce an implementation of the instruction
equivalent to C code shown previously from the Chrome assem-
bler.

Generating the assembler implementations on demand provides
more opportunities for optimization. Only instructions that are ac-
tually used need to be generated, reducing the total amount of code
in the library. Also, we can aggressively specialize instructions to
their use. For instance, in the invocation of movlpd above, the only
dynamically determined arguments are RegR and disp. We can gen-
erate a specific version of movlpd for this invocation.

To generate specialized assembly instructions we take the fol-
lowing approach similar to DynAsm. First, in __methodmissing, we
determine which arguments are constants and which are determined
dynamically. We then use the constant arguments to create a tem-
plate that leaves the dynamically determined information blank.
Finally, we generate code that first copies the template into the
code buffer, and then patches it up with dynamically provided ar-
guments. This approach keeps the code size small by separating the
template from the assembler code. Furthermore, since the template
is normally multiple bytes, we can benefit from vectorized copies.
We can also use this template-based approach to generate assem-
bler code for multiple instructions in a single template. The pro-
grammer can call emit, which supports multiple instructions. Here
is the gather operator expressed using this approach:

terra emitGather(RegR : O, RegA : O, disp : int)
A:emit(op.movd, r8, RegA,
op.movhlps,RegR, RegA,
op.movd,r9, RegR,

5 op.movlpd,RegR,index(r12,r8,8,disp,"qword"),
op.movhpd,RegR,index(r12,r9,8,disp,"qword"))

end

This function fuses the assembly into a single template copy fol-
lowed by patch-up instructions to insert RegR, RegA, and disp. The
resulting code runs at 5.96 GB/s, or 8.3 times faster than the hand-
written Chrome version.

To validate the approach, we rewrote 10 kernels taken from the
Riposte JIT compiler using our dynamic assembler written in Terra
and compare their performance to those of the original code which
uses the Chrome assembler. Figure 7 shows the results for each

kernel. While the Chrome assembler always emits code at a rate
of 700MB/s, the Terra assembler can perform anywhere from 1.64
GB/s to 15 GB/s, depending on the amount of instruction fusion
that is possible. For instance, the add instruction only includes two
x86 instructions, and one of them is only emitted conditionally.
This limits performance to 1.64 GB/s. The emitfn kernel emits
13 instructions and does little patching, enabling it to encode at
15GB/s.

Using exotypes we were able to implement our Terra-based
assembler, including the parts of DynAsm we used to implement
instruction encoding, with only 2100 lines of Lua-Terra code—
less than half the size of the Chrome assembler. Furthermore, by
specializing the assembler code for each call to the assembly object,
we were able to produce assembly code that ran up to 17 times
faster than the reference code.

7.3 Automatic Differentiation

Automatic differentiation (AD) computes derivatives of programs
by differentiating elementary operations (such as multiplication)
and composing those derivatives using the chain rule [5]. It elim-
inates tedious and error-prone hand-authoring of derivative code,
and it gives exact derivatives, unlike finite difference approaches.
AD is widely applied to sensitivity analysis and optimization in
scientific computing and engineering.

Many applications, such as optimizing an objective function,
require the gradient of a single output with respect to multiple pa-
rameters, a setting well-suited to reverse-mode AD. Reverse-mode
AD first runs the program forward, recording each elementary op-
eration and the data needed to compute its derivative on a tape. It
then interprets the tape backward, accumulating the partial deriva-
tive of the output with respect to each intermediate (the interme-
diate’s adjoint), terminating with the partial derivatives for the in-
put parameters. Reverse-mode AD can compute arbitrarily many
partial derivatives with just two sweeps through the program (one
forward and one backward), but the space overhead for the inter-
mediate tape may be significant.

We implemented a reverse-mode AD library with exotypes in
Terra, using an approach similar to that of Stan, a C++ library
for high-performance statistical inference [25]. Programs written
against this library replace floating point numbers with a custom
dual number type for which arithmetic functions and operators
are overloaded. These overloaded functions store their inputs in
an object which is placed on an in-memory tape. The reverse pass
interprets the tape by calling virtual functions on those objects.

Our implementation uses exotypes to programmatically gener-
ate the tape object type for each elementary operator. New opera-
tors are defined using a simple interface:

-- Defining the "__add" metamethod
addADOperator("__add",
-- Forward function code
terra(lhs: double, rhs: double) return lhs + rhs end,

5 -- Adjoint code
adjoint(function(T1, T2)
return terra(v: &TapeObjBase, lhs: T1, rhs: T2)

setadj(lhs, adj(lhs) + adj(v))
setadj(rhs, adj(rhs) + adj(v))

10 end end))

v is the output of the add operator stored on the tape. The inputs
to the operator, lhs and rhs, may be either doubles or dual numbers.
adj(x) extracts the adjoint of x, and setadj(x, v) sets the adjoint
of x to v. In the above example, when lhs or rhs is a double (i.e. a
program constant), the first setadj line is unnecessary, since a has
no adjoint. Our implementation detects this at compile time (adj
and setadj are macros) and does not add an entry for lhs to the tape
object type. In contrast, Stan uses a class hierarchy for tape objects:
Add is a subclass of BinaryOp, whose subclasses all have the same
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Figure 8. Runtime performance and peak memory usage for
reverse-mode AD in Terra and C++. Our Terra implementation
achieves comparable speeds and a 25% smaller memory footprint.

layout. Our approach helps alleviate the memory overhead that is
the main drawback of reverse mode AD.

We evaluate the runtime and memory performance of Terra AD
and Stan C++ AD on a standard optimization task from machine
learning: maximum-likelihood training of a logistic regression clas-
sifier for hand-written digits using the MNIST dataset [18]. For
each implementation, we calculate the gradient of data log prob-
ability with respect to model parameters using 6000 data points,
and we run 100 iterations of gradient descent. Results are shown in
Figure 8. The Terra code achieves runtime performance compara-
ble to C++ with 25% less peak tape memory usage.

Our Terra AD implementation takes 493 lines of code, com-
pared to Stan’s 1187 lines. This difference is due to program-
matic type generation, instead of explicitly-defined class hierar-
chies. While the core of each library (i.e. tape management and
public interface) takes roughly the same amount of code (260 vs.
318 lines), adding new elementary operators is more concise in
Terra (∼10 vs ∼60 lines for a new binary operator).

7.4 Probabilistic Programming

Probabilistic programming languages (PPLs) are a general-purpose
modeling tool for artificial intelligence, machine learning, and
statistics [9, 16]. Probabilistic programs define probability distri-
butions: the program makes random choices (such as flipping a
weighted coin), and running the program produces a sample from
the marginal distribution implied by those choices. By condition-
ing the output of the program on a predicate, programmers can pose
interesting queries of their models.

A universal PPL such as the probabilistic Scheme dialect
Church can describe any Turing-complete, stochastic process, in-
cluding recursive processes and distributions with infinite sup-
port [9]. These languages are expressive, but their implementations
are slower than equivalent hand-coded models. One reason for the
performance gap is algorithmic: inference algorithms (i.e. imple-
mentations of conditioning semantics) must be general-purpose
and cannot easily optimize for the statistical traits of specific mod-
els. Another reason is computational: probabilistic inference is a
numerically-intensive task, but existing universal PPL implemen-
tations are high-level and dynamically-typed, making it harder to
control their performance.

Addressing this second problem, we implemented a Church-
style universal PPL as a library in Terra using exotypes. The query
“What is the chance that a patient has lung cancer, given that she
has a cough?” in a simplistic medical diagnosis model is expressed
in our Terra-based language as:

terra()
var lungcancer = flip(0.01)
var cold = flip(0.2)
var cough = lungcancer or cold

5 condition(cough)
return lungcancer

end

We will highlight two major components built using exotypes
and describe why they would be difficult to implement in a low-
level language without exotypes, such as C++.

First, the Markov Chain Monte Carlo (MCMC) inference algo-
rithm used to sample from conditioned programs requires that every

random choice in the program be given an address that is uniquely
determined by the choice’s structural position in program execution
traces [31]. Typically, addresses are managed with a global stack of
function callsites: every function call pushes a unique ID on en-
try and pops the stack on exit. When a random choice is invoked,
the sequence of IDs on the stack, plus the number of times that
sequence has occurred in the current program execution, uniquely
identifies the random choice.

We implement this behavior through multi-stage programming
with exotypes. Terra functions are replaced with instances of an
exotype Pfn, whose __apply metamethod wraps the function with
code to manage the address stack:

id = 0
function pfn(fn)

-- Exotype declaration
local Pfn = terralib.types.newstruct()

5 -- Wrap function call with address stack code
Pfn.metamethods.__apply = macro(function(self, ...)

id = id + 1
local args = terralib.newlist({...})
local argIntermediates = args:map(

10 function(a) return symbol(a:gettype()) end)
return quote

var [argIntermediates] = [args]
callsiteStack:push(id)
var result = fn([argIntermediates])

15 callsiteStack:pop()
in result end

end)
return terralib.new(Pfn)

end

Critically, __apply is a macro executed at compile time, so each
callsite of the function receives a distinct ID.

Managing random choice addresses is more complicated in
non-staged languages without exotypes. Previous implementations
of universal PPL use either a custom interpreter or a source-to-
source transformation [9, 31]. Interpretation is too slow for our
performance goals, and source transformation requires a complete
parse of the program, which is a steep price to pay for embedding
universal PPL in most low-level languages.

We must also define the behavior of primitive random choices
(e.g. flip). These constructs must sample a value from an under-
lying probability distribution (e.g. Bernoulli), compute the proba-
bility of their values under the distribution, and propose changes
to their values for use in MCMC inference. Our implementation
exposes a Lua function makeRandomChoice for this purpose:

flip = makeRandomChoice(
-- Sampling function
terra(p: double) return (rand() < p) end,
-- Probability function

5 terra(val: bool, p: double)
if val then return log(p) else return log(1-p) end

end,
-- Proposal function
terra(currval: bool, p: double) return (not currval) end)

Internally, makeRandomChoice defines a new exotype RCRecord

that records the value and parameters for each invocation of this
random choice. The entries of RCRecord are determined program-
matically by examining the argument and return types of the sam-
pling function. makeRandomChoice returns a Pfn that constructs an
instance of RCRecord and stores it in a global table mapping random
choice addresses to values.

Because exotypes allow reflection on functions to drive the gen-
eration of new types, we can abstract the details of the random
choice as a single library routine. The user only needs to provide
three functions, which can be overloaded to handle random choices
taking different parameter types. Without exotypes, the behavior
of every random choice would be implemented independently for
each set of parameter types. This approach would result in redun-
dant code and is more error-prone.
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Figure 9. Performance of different probabilistic programming lan-
guages on three example tasks. Javascript runs an order of magni-
tude faster than Bher, and our Terra implementation runs an order
of magnitude faster than that.

We evaluate the performance of our Terra PPL implementation
on three example programs: conditioned sampling of a length-100
sequence from a Hidden Markov Model with 9 hidden states and
10 possible observations (HMM); learning the parameters of a
three-component Gaussian Mixture Model from 1000 data points
(GMM); and simulating a 1000-site one-dimensional Ising model
(Ising). All examples were run for 5000 iterations of MCMC. We
compare performance to that of Bher (a compiled implementation
of Church [31]) and a probabilistic dialect of V8 Javascript actively
used in teaching. We only evaluate Church on the first example
because the other two require language primitives not available in
Church.

Results are shown in Figure 9. The Javascript implementation
is an order of magnitude faster than Bher on the HMM example.
This difference is due in part to V8’s optimization engine, and also
to the overhead of Bher’s purely functional data structures (par-
ticularly the trie it uses for random choice addressing). Our Terra
implementation is, on average, an additional order of magnitude
faster than Javascript. Terra’s static typing allows up-front compi-
lation of much more monomorphic code, reducing the number of
virtual function calls as well as boxing/unboxing overhead.

Finally, the exotype constructors used in this library are com-
posable with other exotypes. For example, the dual number type
from our automatic differentiation library can compose with RCRecord

to automatically compute derivatives of program probabilities with
respect to random choices. We have implemented an MCMC algo-
rithm that uses these derivatives to perform more efficient inference
for programs defining mostly-continuous distributions [19].

8. Related Work

Previous work has proposed several optimizations to improve the
performance of meta-object protocols in dynamic languages. Most
of this work has focused on dynamically-dispatched protocols. For
instance, Self, a language based on prototypes that was a precursor
to more general protocols, used polymorphic inline caching to op-
timize method dispatch [13]. Kiczales et al. propose a meta-object
protocol for CLOS that uses memoization to speed up method dis-
patch [15]. These approaches normally still incur some runtime
overhead (e.g., to check the cache). In contrast, exotypes are ex-
ecuted during staged compilation, which removes all runtime over-
head that is not desired by the user.

There is some work on meta-object protocols that are evalu-
ated statically [3, 17]. The most popular of these approaches pro-
vides a meta-object protocol for C++, OpenC++, based on source-
to-source translation that allows a programmer to customize the
semantics of C++ classes and functions using meta-classes that
produce program fragments [3]. Since these methods are applied
ahead-of-time, they do not add any runtime overhead, but require
that all information used to create the type be available during com-
pilation. In contrast, Terra is a staged programming language, so

new exotypes can be introduced during the execution of a Lua-Terra
program, and used in newly generated functions.

The original work on multi-stage programming such as MetaML
or MetaOCaml focused on generating new code rather than new
types [28, 29]. Other systems extend this work to object-oriented
languages and provide some degree of staged type computation.
Metaphor is a multi-stage language with support for type reflection
on a built-in class system [20], and Ur [4] allows first-class compu-
tation of records and names based on principles from dependently-
typed languages. Both try to guarantee that any code produced
using staging will be type correct, making it difficult to generate
some types whose semantics depend on dynamically provided data.

Other work on staged programming has focused on optimiza-
tions that can be applied to object representations. Rompf et al.
propose a system that implements internal compiler passes that use
staging to optimize the behavior and the layout of objects in a inter-
mediate representation suited to parallel programming embedded
in the Scala language [24]. Type signatures are originally described
using Scala’s class system, but then their representation and imple-
mentation can be optimized through staging. Exotypes additionally
allow the original type signatures and behavior to be described pro-
grammatically.

Several industrial languages also implement systems similar
to exotypes [2, 27]. F# allows type providers which can specify
types and methods based on external data [27]. Like exotypes,
these providers are queried lazily when an operation on the type
is requested. However, the goal of type providers is to safely type
complex data representations, so providers are normally compiled
ahead-of-time rather than during program execution. Furthermore
they normally describe types on top of the CLR’s object system
rather than have the programmer describe their own low-level im-
plementation of types. In the Scala language, the combination of
compile-time macros and syntax sugar for supporting dynamic ob-
jects allows some types to be described programmatically. Similar
to F#, this approach is normally applied ahead-of-time and built
on top of the JVM objects rather than a low-level language. Other
solutions are tailored to specific problems such as Google’s proto-
col buffers, which provides a language for generating types with
serialization behavior in several target languages [11].

9. Discussion and Future Work

We have shown how to supplement a low-level language with a
meta-object protocol based on staged programming for describ-
ing the behavior and memory layout of types. Exotypes described
this way are concise and composable while still allowing the pro-
grammer to control their performance. Using these types, we were
able to implement libraries for serialization, assembly, differenti-
ation, and probabilistic programming that perform as well as or
better than state-of-the-art counterparts while often being substan-
tially more concise. Furthermore, types generated in our examples
have simple interfaces similar to existing libraries, encapsulating
the use of staged programming inside their implementation. We be-
lieve this approach will allow a wider audience to benefit from the
performance of staging.

Defining libraries using exotypes has some limitations that can
be improved in the future. Dynamically evaluated meta-object pro-
tocols like those in Lua can mutate the behavior of objects in exist-
ing code by changing the implementation of metamethods. Since
Terra is a compiled language focused on high-performance code,
we do not allow the results of property queries to change during
evaluation if it would require recompilation of Terra code. For
instance, the layout of a type provided by __getentries cannot
change, and methods cannot be modified or removed once they are
compiled. However, it is still possible to create new types and meth-
ods.



Statically-typed high-level languages generally provide more
robust guarantees of type-safety. Lua-Terra programs are dynami-
cally typed, so type errors in exotypes are not reported until a func-
tion is compiled. For some uses it is possible to compile all Terra
code upfront before evaluating Terra code. In this case, Lua can be
viewed as a safer replacement to C++’s preprocessor or template
meta-programming that occurs during compilation. We provide the
additional flexibility of generating new exotypes at later stages in
exchange for complete up-front typechecking.

Furthermore, exotypes are implemented in Terra, a language
that allows unsafe type casts, making it possible for programs
with poorly written exotypes to crash. It is still possible to im-
plement similar behavior in type-safe runtimes. For instance, F#
type providers translate to objects in the CLR, which provides more
safety guarantees [27]. However, since type-constructors and other
higher-kinded types are implemented in a full language, it is still
not possible to guarantee that they will work for all intended in-
puts. In the future, we want to investigate ways of constraining the
properties that a type constructor can request to provide better guar-
antees of type-safety for all inputs.

Exotypes allow the optimization of individual objects. How-
ever, optimizations across objects such as optimizing linear alge-
bra equations on matrices and vectors are more difficult to express.
We would like to integrate rewrite-based systems such as the one
suggested by Rompf et al. [24] by adding additional meta-methods
that are called when an exotype is found in an expression. Inte-
grated with common compiler optimizations, we think these addi-
tional rewrites can provide optimization across expressions of ob-
jects.

Finally, our examples show that by making libraries more con-
cise using exotypes, it becomes feasible to specialize them for par-
ticular uses. In the case of serialization or assemblers, this special-
ization allows fusion optimizations that lead to large speed-ups over
state-of-the-art libraries. We believe that this approach of writing
concise but aggressively optimized libraries for specialized uses
can be extended to more domains. An object-relation mapping can
be optimized for particular data layouts. Class systems can be tai-
lored to the specific code reuse and subtyping requirements of a
domain such as abstract syntax trees or graphs. In the future we
hope that more patterns of code reuse and optimization can be dis-
tributed as concise exotype libraries.
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