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Abstract
We present an algorithm which provably reconstructs a collection
of curves with corners and endpoints from a sample set that
satisfies a certain sampling condition. The algorithm outputs a
polygonal reconstruction that contains the edges in the correct
reconstruction of the curves and such that any additional edge
between sample points is justified. Furthermore, we show that for
any such collection of curves, there exists a sample set suchthat
a slightly modified version of our algorithm outputsexactly the
correct reconstruction. The algorithm also performs quitewell in
practice.

1 Introduction

We consider a collection of disjoint curves, each with a well-
defined tangent at all but a finite number of points at which
there is either anendpointor acorner(at which the tangents
from both directions exist but are different). See Figure 1.

Figure 1: A collection of curves with corners and endpoints.

Given a setS of sample points (samples) from a collec-
tion � of open and closed curves, curve reconstruction is the
problem of computing the graphG(S;�), called thecorrect
reconstruction,whose vertex set isS and that has an edge be-�The author was supported by a scholarship of the Deutsche Forschungs-
gesellschaftyThis research was partially supported by ESPRIT LTR project28155
(GALIA)

tween two samples if and only if these samples are adjacent
on a curve in�.

Obviously, it is not possible to correctly reconstruct a
given curve from an arbitrary sample set from it. Therefore,
some restrictions are needed on the sample which specify
how dense a sampling has to be to guarantee a correct output
of the algorithm. The first algorithms for curve reconstruc-
tion [3, 9, 10, 13] imposed auniformsampling condition as
they basically demanded that the distance between any two
adjacent samples must be less than some constant. This is
not satisfactory as it may require a dense sampling in areas
where a sparse sampling is sufficient.

Amenta, Bern, and Epstein [2] introduced the concept of
the local feature size. The local feature size lfs(p) of a pointp on the curve is defined as the distance to themedial axis
of this curve. The medial axis of a curve is defined as the
set of points in the plane which have more than one closest
point on the curve. Roughly, a neighborhood of a point of
size equal to its local feature size is intersected by the curves
in a single piece that winds up only a small angle.

Using this concept of local feature size, Amentaet al.
define a non-uniform sampling condition that allows for
sampling of variable density. Concretely, their sampling
condition states that for any pointp 2 �, there must be a
sample within distance� � lfs(p). Then they give an algorithm
that, given a sample set from a collection of smooth closed
curves which satisfies this sampling condition for a certain� < 1, computes the correct reconstruction. This algorithm
works by computing the Delaunay triangulation of the point
set and then filtering it to obtain the reconstruction. A
survey of algorithms based onDelaunay filteringcan be
found in [8]. Subsequently, several variations that still
only handle smooth closed curves were presented [4, 12].
Later, Dey, Mehlhorn, Ramos [5] extended this work to
handle a collection of open and closed smooth curves. Their
algorithm is also based on Delaunay filtering.

The sampling condition with respect to the local feature
size can be fulfilled for smooth curves. Problems arise,
though, if the curves have corners,i.e. points for which
left and right tangent disagree. In this case, the medial axis
actually reaches the corners and, hence, requires an infinite



dense sampling in the corner areas. The algorithms for
smoothcurves presented so far not only fail theoretically but
also in practice (see for example the Figures at the end of this
paper).

Giesen [11] uses a different sampling condition for cor-
ner areas and shows that for a sufficiently dense sampling,
the TSP (traveling salesman problem) tour is the correct re-
construction for a single closed curve (possibly with cor-
ners). Althaus and Mehlhorn [1] have extended this result
by showing that in this case the TSP tour can be computed
in polynomial time. The problem with this approach is that
so far it can only handlesingle, closedcurves. Recently,
Dey and Wenger [6] gave an algorithm that allegedly han-
dles well corners and endpoints in practice. The algorithm
has no guarantee and, in fact, it is not difficult to find coun-
terexamples where it fails.

In this paper, we present an algorithm that provably re-
constructs a collection of curves with endpoints and corners.
As in [5], when the sampling condition only establishes a
lower bound on the sampling density, it is not possible al-
ways to output the correct reconstruction. Instead, we verify
that the output of the algorithm contains the correct recon-
struction and that any extra edges in the output are justified.
Furthermore, we present an upper bound on the sampling so
that the algorithm outputs exactly the correct reconstruction.
Our sampling conditions are stated with respect to the cor-
rect reconstruction of the sample set rather than with respect
to the original curve (as in the case of the condition based
on the medial axis), this allows to produce a correct recon-
struction when it is possible from the samples even if it is
not a faithful approximation of the curve. Because sampling
conditions based on the medial axis have been widely used,
we also make the following connection: If a sample is valid
with respect to the medial axis, then it is also valid with re-
spect to our sampling condition. Our algorithm is also based
on Delaunay filtering. However, unlike all the previous algo-
rithms, our filtering is not a simple local rule: The algorithm
first detects ’smooth’ edges reliably and then, starting from
the endpoints of the resulting smooth chains, it ’walks’ into
the corners.

Concurrently with our work, Dey and Wenger have
developed an algorithm based on their work in[6] which
provably reconstructs a collection of closed curves with
corners (no open curves) [7]. They also use the idea of
first detecting ’smooth’ areas and then exploring corner
areas. While we have described our algorithm mostly in
terms of empty�-balls, they use what they call the ’ratio
condition’ which denotes the ratio between the lengths of
Delaunay edges and their dual Voronoi edges. In fact these
concepts are quite the same. The conditions under which
they guarantee correct exploration of corners differ from
ours.

2 Sampling Condition

The problem of curve reconstruction as stated in the intro-
duction only postulates that we connect all samples which
are adjacent on the original curve. The sampling condition
with respect to the medial axis does more, though. It also
makes sure that the sampling (and the reconstruction) does
not miss a single feature of the original curve. So it even
guarantees that we obtain a goodapproximationto the curve.
The question is whether we really want that. See for example
Figure 2.

Figure 2: Wiggling Curve with MA sampling condition

If we apply the medial axis sampling condition, we are
forced to sample this curve very densely as the ’wiggling’
implies a very small local feature size for any point of
the curve, and the correct reconstruction of the sample set
is a pretty good approximation of the original curve not
missing a single ’wiggle’. But if the only thing that we
want is connecting the right samples (as stated in the original
problem of curve reconstruction), a far less dense sampling
should also do, as can be seen in Figure 3.

Figure 3: Wiggling Curve with less dense sampling

Of course, now the correct reconstruction does not
approximate the curve as with the higher sampling density,
but nevertheless, a correct reconstruction should be possible
as well.

So what we propose is the following: The decision of
whether a given sample setS from a collection of curves� is
valid should not be stated with respect to the original curve,
but rather with respect to the correct reconstructionG(S;�)
of this sample set. Such a sampling condition would allow to
’skip’ details of a curve if this does not affect the possibility
to correctly reconstruct the curve (in the sense of our original
definition of the curve reconstruction problem).

As mentioned in the introduction, one problem with a
sampling condition with respect to the medial axis is the fact
that for curves with corners, the medial axis passes through
the corners, hence requiring a infinitely dense sampling near
corners. This can be fixed by relaxing the sampling condition
within controlled areas around the corners. We will use this
idea for our sampling condition in the next section as well.

We believe that a sampling condition expressed with
respect to the correct reconstructionG(S;�) is more sensible
than a sampling condition expressed directly with respect



to the curve (and the medial axis). However, since the
medial axis sampling condition has become quite a standard
in recent work on curve reconstruction, we will also show
that our sampling condition is implied by the medial axis
condition,i.e. all sample sets of a curve that are valid with
respect to some medial axis sampling condition are also valid
with respect to our sampling condition, i.e. our sampling
condition is strictly weaker.

2.1 Our Sampling Condition Our sampling condition
describes how the correct reconstructionG(S;�) of a sample
setS with respect to a collection� of open and closed curves
(possibly with corners) must look like to guarantee certain
properties of the output of our algorithm. Let us first consider
a collection of open and closed curves without corners:

Sampling Condition for Smooth Areas: A sample setS
for a collection of open and closed smooth curves�
is valid, if for every edgee = (p; q) of the correct
reconstructionG(S;�) the following holds (also see
Figure 4):� the two closed ballsB1; B2 of radiusr1 = � � jej=2
touchingp andq are empty of other samples� the samples within the closed diametral ball arounde of
radiusr3 = fdia � jej can be connected in one chain that
makes a total turn of less than�ball

r1B1r3 er1B2
Figure 4: Sampling Condition for smooth areas

As with the medial axis sampling condition, the prob-
lems arise near corners. To solve them, we first have to iden-
tify areas near a corner and then define a weaker sampling
condition for edges of the correct reconstruction which are
completely contained in such a corner region.

Identification of corner areas: For each corner grow a ball
around the corner point as long as:

� the ball intersects the curves in� in two smooth
curve segments, which we refer to as thelegsof
the corner, each with an endpoint in the corner and
the other on the boundary of the ball� on each leg the tangent varies by at most�slope� for any pointss1; s2 on different legs, the line
segments1s2 intersects theinterior of the corner,
that is, the area of the ball on the same side of the
curve as the smaller angle at the corner1

The maximal ball obtained by this is then shrunken by
a factor offshrink. The area within the shrunken ball
defines a corner area.

Now we have to state a weaker sampling condition for
these corner areas. First we drop the second part of the
sampling condition for smooth areas of the curve, and allow
samples on the other corner leg in the�-ball touching an
edge from ’inside’. Additionally, we add a condition that
makes sure that we can locally decide to which leg a sample
belongs to. Otherwise it is difficult to decide locally whether
there is a corner or not as it can be seen in Figure 5 (unless,
we make further assumptions,e.g. that there is only a single
closed curve).

’Smooth with 2 endpoints’

Corner

Figure 5: How to connect these samples ?

So our sampling condition for edges of the correct
reconstructioncompletelyinside a corner region is stated as
follows:

Sampling Condition for Corner Areas: Let e = (p; q) be
an edge of the correct reconstruction completely inside
a corner region, then we postulate (also see Figure 6):� the closed ballB1 of radius� � jej=2 touchingp andq from the ’outside’ of the corner is empty of other
samples� the closed ballB2 of radius� � jej=2 touchingp andq from the ’inside’ of the corner may only contain
other samples of the opposite leg ending in that corner

1This is equivalent to the corner point being on the boundary of the
convex hull of the legs inside the ball.



(with the exception of the edge connecting the last two
samples of each leg, whose inner�-ball may contain
samples of both legs) which are inside the unshrunken
corner ball� the closed ballb1 of radius�low � jej=2 touchingp andq from the ’outside’ of the corner is empty of other
samples� the turn betweene and its adjacent edges in the correct
reconstruction must be less than�turn (again with the
exception of the edge connecting the last two samples
of each leg, but including the ’virtual’ edges connecting
those last two samples to the actual corner point)� let le1 ; le2 be the supporting lines of two edgese1 ande2 which are on different legs; then we have that the
intersection pointI = le1 \ le2 does not lie in opposite
direction to the corner with respect tobothe1 ande2r1 B1b1 e r1 B2

r2
Figure 6: Sampling Condition for corner areas

We can now summarize our sampling condition.

General Sampling Condition: A samplingS for a collec-
tion of open and closed curves� (possibly with corners)
is valid if for any edgee 2 G(S;�)� Sampling Condition for Smooth Areas holds ife

is (at least partly) outside a corner region� Sampling Condition for Corner Areas holds ife is
completely inside a corner region� Any smooth component of the correct reconstruc-
tion consists of at least 3 samples

Before we proceed to present the algorithm in the next
section, we list some notation and conventions that will be
used throughout the paper.

Notation/Conventions

corner sample: We call the last samples of each legcorner
samples. If there is a sample close to the actual corner,
we may say that there is only one corner sample as this
sample fits into both legs.

corner spanning edge:We call the edge connecting the last
samples of each legcorner spanning edge.

smooth/corner area: We call the area in the shrunken cor-
ner ballcorner area, the rest is calledsmooth area.

smooth/corner edge:We call an edge which lies com-
pletely inside the shrunken corner ball acorner edge,
the other edges aresmooth edges

red/blue edge: We say an edgee is red, if it has two empty�-balls, we saye is blue, if it is not red, but has empty�- and�low-balls on one side.2

In the figures, we draw a small normal arrow at the
midpoint of an edge to indicate that it has�- and�low-
balls on that side. So every red edge has two such
arrows, whereas every blue edge has only one arrow,
as can be seen in Figures 4 and 6.�beta, �low: To simplify notation we write�beta for arcsin 1�
and�low for arcsin 1�low

2.2 Medial axis sampling condition implies our sam-
pling condition First we identify the corner areas in the
same way as for our sampling condition but with�slope =�turn. We then define a new local feature size lfs0(p) for any
pointp on the curve as follows:� if p is not in any shrunken corner ball, lfs0(p) is equal to

the distance ofp to the medial axis of�� if p is contained in a shrunken corner ball, lfs0(p) is
equal to the distance fromp to the medial axis of the
collection of curves obtained by removing the leg not
containingp within the unshrunken corner ball3.

The sampling condition is then stated as follows:

Sampling Condition w.r.t. the medial axis :� for every pointp on the curves there must be a
sample within distance� � lfs0(p)

2Clearly all smooth edges must be red, but some of the corner edges and
even some edges that do not belong to the correct reconstruction might also
be red.

3We define the local feature size of the corner point as the minimum
distance to either medial axis



� for any edgee = (p; q) of the correct reconstruc-
tion and any other sampler within the shrunken
corner ball, the angle determined bye at r is less
than�angle = � � �low� any component of the collection of curves must
contain at least 3 samples

COROLLARY 2.1. Any sample setS valid with respect to
the medial axis sampling condition is valid with respect to
our sampling condition.

Proof. Choose� = �( 1� ).
3 The algorithm

The main idea of our algorithm is that we first detect the
edges that can be justified as being ’smooth’. Then start-
ing from these edges we explore potential corner areas, pos-
sibly removing some of the edges previously discovered as
smooth.

The following is a high-level description of our algo-
rithm:

1. Compute the Delaunay triangulation ofS
2. Among the Delaunay edges determine the set of all

edgese which have two balls of radius� � jej=2 empty
of other samples. Color these edgesred.

3. Uncolor all red edges that belong to red chains of length
less than 3.

4. Let T be the set of samples which are adjacent to
exactlyonered edge

5. As long as there are elements inT , remove one of them
and start exploration of a potential corner. If successful,
add this corner to the setM of detected corners.

6. Remove interfering corners fromM
7. Remove some red edges that interfere with the corners

in M to get the final polygonal reconstructionH(S).
8. Construct a collection of smooth curves�0 from H(S)

by adding small ’caps’ and corners points

Of course, the most interesting part is how to actually
explore potential corners. From now on, we assume that a
corner is represented as two sequences corresponding to the
upper and lower leg ending in that corner.

3.1 Exploring a corner The idea of the corner exploration
is that we consider a samples 2 T as starting point of a
potential corner.s is adjacent to exactly one red edgees, and
we first try to continue this red edge with a blue edge. As
we do not know the orientation ofes, i.e. we do not know

s si el si�1s0 e0�turn e�turn
Figure 7: Picking the next edge of the potential corner

where the ’outside’ of the potential corner is, we simply try
both possibilities.

For this step and the steps to follow, a crucial part is how
to determine the next edge in a leg. This is done using the
following procedure (also look at Figure 7):

FindNextEdge(si, si�1): Let el = (si; si�1) be the last
edge detected in one leg of a corner. Assume we are also
given an orientation, i.e. we know where the ’outside’
of the corner is (which implies that there are empty�-
and�low-balls on that side).

Let M be the set of all blue or red edgese0 = (s0; si)
which make a turn of less than�turn with el and which
have empty�low- and�-balls on the same side asel.
As next edgee = (s; si), pick the shortest among the
edges inM .

Having found this adjacent blue edgeeb, we use the fact
that this blue edge builds a Delaunay triangle with a sampleo on the opposite leg (follows from the sampling condition).
If o has no adjacent red edge, we abort the exploration,
otherwise we pick one of the (potentially two) red edges
adjacent too – let’s call iteo which does not contain a sample
already part ofes oreb. Then we ’walk’ along both (potential
corner) legs until finding the corresponding corner. As we
do not know in advance neither the orientation ofeo, i.e.
where with respect toeo the ’inside’ of the corner is, nor the
direction ofeo, i.e. in which direction the corner lies, we just
try all four possibilities4. Similarly, there might be cases,
where only one of the (potentially two) red edges adjacent too leads to a correct corner exploration, so we also try both
possibilities5.

Following the legs actually works step by step. We
first determine for each of the two current reconstructed legs
whether there exist potential continuation edges (using the
FindNextEdgeprocedure). We take the shorter of them and
then verify whether the things reconstructed so far justifya
corner. If so, we store it inM but nevertheless continue to
follow the candidate legs until either� for both sequences no continuations are found, or

4In many cases it is possible to exclude some of the directionsand
orientations, but there are examples where it is not possible to decide which
direction/orientation is the right one.

5There is one case, where one of the red edges leads to an incorrect
corner exploration, namely when one of them is a corner spanning edge.



� a sample is picked a second time, or� the slope between any two segments in one candidate
leg is larger than�slope� the supporting lines of two edges in different legs
intersectboth in opposite direction to the corner w.r.t.e1 ande2.
When this procedure terminates, we take the last corner

(which also means the ’largest’) that was successfully veri-
fied (if any) and add it to the setM of potential corners (with
all edges of the grown corner ball as determined in the fol-
lowing verification stage).

3.1.1 Verifying a cornerThe task of the verification stage,
which is called after every continuation step, is to check
whether the connections found so far make up a justifiable
corner. To do this, we compute a tentative corner point and
check whether there exists a large enough ball to cover all of
the blue edges in our current reconstruction which is empty
of other samples (samples that are not part of the corner to
be verified).

Let su and sl be the last samples in the upper and
lower legs reconstructed so far, and leteu and el be the
corresponding last edges. To determine a tentative corner,
we consider the two cones of angle2 � �turn at su andsl
w.r.t. eu andel. The tentative corner pointC is determined
as (in this order):� if su is contained in the other cone, setC = su (and

vice versa)� if the cones do not intersect, the corner verification has
failed� if the cones intersect, take the ’inner’ intersection point
of their borders.

We then determine the maximum distanceD fromC to
any point in one of the sequences found so far which has a
blue adjacent edge. We extend the two candidate legs by red
edges (if such exist) as long as the total turn (including the
edges from the tentative corner pointC to the last samples
of the candidate legs) is less than�slope + �turn in each leg
and as long as the furthest point of each leg has distance less
thanfgrow � D from C. If no such red edges can be found,
the verification fails, otherwise, we consider the ball aroundC with radiusfgrow � D. If it contains other samples than
the one present in the two sequences, the verification fails,
otherwise we check that all blue edges only contain in their
inner�low-balls samples of the opposite leg within the grown
ball, and that any connection between samples of different
legs intersects the interior of the corner.

(a) (b)

Figure 8: Cases of agreeing overlap

3.2 Removal of interfering corners Our algorithm by
now has produced a collection of possible corners (repre-
sented as the two reconstructed legs ending in that corner)
which might possibly interfere with each other, where we
say that two corners interfere with each other, if the overlay
of the corresponding graphs has a degree 3 vertex. We dis-
tinguish two kinds of interference:overlapandintersection.
Two corners� overlapIf the degree 3 vertices are only caused by (at

most two) corner spanning edges which cross the inte-
rior of the other corner. We also distinguish between:

agreeing overlap: if both corners point into the same
direction, see Figure 8 for a schematic outline of
these cases.

disagreeing overlap: if the corners do not point into
the same direction. This case cannot happen due
to the the sampling condition where we disallow
that the supporting lines of two edges on different
legs intersect in opposite direction to the corner
for bothedges.� intersectif they interfere but do not overlap

We first get rid of the intersecting corners by just delet-
ing any pair of corners that intersects each other. For the re-
maining overlapping ones, we always delete the corner that
starts inside the other one, so in Figure 8, the dashed corners
would be deleted.

3.3 Removal of interfering red edgesAt that stage we
have identified a set of potential corners, but some of them
might interfere with red edges found in the first step, i.e. they
might touch or cross a potential corner causing a degree 3
vertex. We will prove later on that these red edges cannot be
part of the correct reconstruction, so we simply delete them.

4 Correctness of the algorithm

First we have to prove is that if a collection of curves� is
correctly sampled according to our sampling condition, then
the correct reconstruction is part of the output graphH(S)
of our algorithm (’Good edges are captured’). Of course
we could satisfy this by returning the complete Delaunay
triangulation of the sample set. So as in [5] we also have to
prove that there exists a collection of curves�0 for whichS is
a valid sampling (with a slightly weaker sampling condition)



andH(S) is the correct reconstruction ofS with respect to�0 (’Captured edges are good’). So�0 is in some sense a
certificate for the reasonability of each edge our algorithm
has constructed.

When choosing appropriate parameters for the sampling
condition and the algorithm like� = 2, �beta = 300 �low = 2p3 , �low � 60�turn = 10o �slope = 30o�ball = 30o fdia � 2:84fshrink � 4:71 fgrow � 1:86

we obtain the following two theorems:

THEOREM 4.1. Let � be a collection of open or closed
curves possibly with corners,S be a set of samples from that
collection meeting our sampling condition. Then each edge
of the correct reconstructionG(S;�) is present in the graphH returned by our algorithm with the only possible exception
of edges spanning a corner of the curve.

THEOREM 4.2. For any input sample setS, our algorithm
returns a graphH and a collection of curves�0 such thatS
is a valid sample set for�0 with:�0 = � �0low = �low�0turn = �turn �0slope = �slope + �turnf 0dia = 12 �0ball = �ballf 0shrink = fgrowp1� 1�2

andH = H(S;�0), i.e.H is the correct reconstruction
ofS with respect to�0.
Remarks One might wonder why Theorem 4.1 excludes
corner spanning edges ofG(S;�) in the guarantee for the
output of our algorithm. One reason for that is that if the
two legs of a corner are sampled so densely that there is
no blue edge, our algorithm cannot find a starting point
for the corner exploration, so it finds all edges except for
the corner spanning edge (see Figure 9). Observe that this
also makes sense, because if the two legs are very densely
sampled, it may well be the case that the original curve does
not have a corner there but just two endpoints. We will
need this ’conservative’ behaviour of our algorithm later on
when we modify the sampling condition and our algorithm
to get a result of the type:For every collection of curves with
corners and endpoints, there exists a sampling such that our
algorithm outputs exactly the correct reconstruction.

The other reason for a corner spanning edge possibly not
being detected is that our algorithm manages to extend the
corner further by one or more samples. See Figure 10. Here
the actual corner would be the dashed one, but the algorithm
was able to justify the extended corner which also includes

Figure 9: Densely sampled legs of a potential corner

Figure 10: Corner extended by another sample

the samples (which has to be outside the unshrunken corner
ball of the correct corner, of course). Note that this is
mainly due to our relaxed sampling condition which uses
a constant for�turn independent of the angle at the actual
corner. Later we will show how to exclude that case as well
without sacrificing the constant�turn angle.

In the following we elaborate on these two theorems
but do not include the proofs which can be found in the full
version of this paper.

4.1 Good edges are captured (Theorem 4.1)LetG(S;�)
be the correct reconstruction ofS with respect to a collection
of curves�. We will show in the following that ifS is a valid
sampling of�, then every edge of ofG(S;�) will be detected
and ’survive’, and therefore be present in the outputH of our
algorithm (with the exception of corner spanning edges).

The following lemma does not require proof:

LEMMA 4.1. Smooth edges are detected and colored red by
the algorithm after the first 2 steps.

What we have to prove now is that smooth edges will
not be killed later on because of interference with a potential
corner:

LEMMA 4.2. A smooth edge cannot:

1. ’touch’ a (wrong) corner from outside at a sample
which is not a corner sample

2. ’touch’ a corner at a corner sample

3. ’cross’ an incorrectly detected corner

So now we know that every smooth edge of the correct
reconstruction will survive the stages of our algorithm and
hence be present in the output. Let us now consider the
non-smooth edges of one particular corner. First we will
show that there is a canonical elements 2 S such that
if the algorithm starts a corner exploration froms, it will



detect a potential corner which covers all the edges of the
real corner we are considering (possibly even more, as we
have mentioned before).

To prove this we first have to state a small lemma which
implies that if we are given a correct part of the sequence of
samples on either leg (together with an orientation where the
’outside’ is), our procedureFindNextEdge() will find
the next edge of this leg (if it exists).

LEMMA 4.3. Let e = (s1; s0) be an edge of the correct
reconstruction within a corner area, oriented such that the
’outside’ of the corner lies to the left of��!s1s0, and lets be the
other sample whichs1 is adjacent to. Assuming thats lies
on the same leg ass1 ands0, then there is no other samples0
such that the following conditions all hold at the same time:� the turn-angle betweene ande0 = (s0; s1) is less than�turn� d(s1; s0) � d(s1; s)� there is an empty�-ball to the left of

��!s0; s1
Now we know that if we have somehow managed to

find the right ’start’ of the corner, i.e. correctly determined
the start of the two legs ending in that corner, there will be
a time during the algorithm’s execution where exactly the
correct edges of the corner have been detected (except for
the corner spanning edge). This can be easily seen by the
fact that we always extend with the shorter continuation edge
and therefore first all edges within the corner area are picked
before connecting to outside the corner area.

To show that for every corner there exists a good start-
ing point for the exploration, follow the red edges of the cor-
rect reconstruction on both legs until hitting an edge of the
correct reconstruction which is not red (or reaching a corner
sample). Letpl; pu be the samples obtained by this proce-
dure. If both are corner samples, we don’t even have to start
a corner exploration as all edges of the correct reconstruction
are already detected (except for the corner spanning edge).
Otherwise at least one of them is not a corner sample and
has no other (wrong) adjacent red edge. If it is exactly one,
then this is a good starting point for the corner exploration,
if both are not corner samples and do not have other (wrong)
adjacent red edges, one of them will be a good starting point.
We call this thecanonical corner exploration.

It remains to prove that at the point when exactly the
correct edges have been detected, the verification test will
pass.

LEMMA 4.4. At the time when the correct edges of a ’real’
corner have been detected, the verification test will pass forfgrow � (fshrink � 1)=2.

So now we know that for each corner of the correct
reconstruction, there is at least one reconstruction detected

by the algorithm which covers all edges of that corner. It
remains to show that for every corner, one of them survives
the next stages.

LEMMA 4.5. The reconstruction of a correct corner cannot
be intersected by the reconstruction of a ’wrong’ corner.

LEMMA 4.6. At least one corner exploration covering (at
least) all edges of a corner in the correct reconstruction
survives all stages of the algorithm.

We have proven that every edge of the correct recon-
struction is detected by the algorithm and survives till the
end (expect for corner spanning edges). So ’all good edges
are captured’.

4.2 Captured edges are good (Theorem 4.2)Basically
almost all statements of Theorem 4.2 follow directly from
the algorithm. The only statement that requires a proof is the

statement that for every corner, the ball of radiusr �q1� 1�2
does not intersect any segments of the output graph which
are not part of the the two legs ending in that corner, wherer is the radius of the extended corner ball. But this can be
easily seen, as the distance of any edgee to the center of the

extended corner ball must be greater thanr �q1� 1�2 , since

thise must have an empty�-ball on that side, hence the ball

of radiusr �q1� 1�2 cannot intersect any of these segments.

4.2.1 Construction of a collection of Witness Curves�0
As our sampling condition does not directly refer to the
curvature of the curve, we can construct witness curves by
simply taking the polygonal reconstruction computed by our
algorithm and adding very small ’caps’ at every sample
which is adjacent to two non-corner spanning edges. Corner
spanning edges are replaced by two edges to the corner point
estimated by the algorithm.

4.2.2 Witness Curves with respect to the medial axis
Using the same idea as in [5], we can prune the output of
our algorithm even further and then construct curves as in
[5], which are then witness for the sampling condition with
respect to the medial axis.

5 How to obtain exactly the correct reconstruction ?

The algorithm as outlined so far guarantees that all edges
of the correct reconstructionG of the original collection of
curves� are present in the outputH of our algorithm (with
the exception of the corner spanning edges), but there might
be additional edges in the output, though our algorithm can
’justify’ each of them.

The ultimate goal, of course, is to find a sampling con-
dition and an algorithm which for any collection� of curves



(a)
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p qp q
Figure 11: Connectp andq or not ?

with endpoints and corners guarantees that the output of the
algorithm is exactly the correct reconstructionG(S;�), if the
sample setS conforms to this sampling condition.

To reach this goal, one first has to restrict the possible
curves allowed in�. Given any sample setS, it is always
possible that the original collection of curves� consists
exactly of those sample points, i.e. each curve in� is
degenerate in a sense that it only consists of a single point.
There is no way the algorithm can detect this. So it seems
reasonable to restrict the curves allowed in� to be non-
degenerate, i.e. each curve must consist of more than just
one point.

The second difficulty arises in cases as sketched in Fig-
ure 11. With the current sampling condition and algorithm,
the algorithm would connectp andq even if they are end-
points in the correct reconstruction, provided there are no
samples in the neighbourhood which are inside the�-balls
of (p; q).

Note that in Figure 11,(a) it really seems reasonablenot
to connectp and q as the edge(p; q) would be very long
compared to the other edges in that chain. On the other hand,
one should definitely not reject an edge(p; q) just because
let’s sayq’s other adjacent edge is very short as shown in
Figure 11,(b).

So we propose the following oversampling condition:

Oversampling-Condition: Let e = (p; q) be an edge in a
potential reconstruction of a sample set. Furthermore
let q1; q2; q3; : : : qk be the samples in the chain when
following the chain adjacent toq, and letp1, p2, p3,: : : qk the samples adjacent top.

We saye is not reasonable due to oversampling, if either� q1; : : : qk exist and8i = 1 : : : (k � 1) we havejej > fstretch � d(qi; qi�1),� p1; : : : pk exist and8i = 1 : : : (k � 1) we havejej > fstretch � d(pi; pi�1),
If we use for examplek = 5 andfstretch = 2 this means

that for one particular edgee, the longest edge amongst its 5
neighbours on either side must be at least half as long ase.

So we add the following condition:

Minimum Sampling Condition: For each component of
the collection of curves�, there must be either 0 sam-
ples or more thank samples.

It should be clear how to modify the algorithm to reject
edges which are unreasonable due to oversampling. The
way we can now find an appropriate sample set to get rid
of the gap closing edges is that we first take a valid sample
set with respect to our original sampling condition and then
add samples on the edges close to a gap until this edge gets
rejected due to the oversampling condition. We can also turn
this directly in a sampling condition:

Gap Marking: For any edgee of the correct reconstruction,
all diametral balls arounde with radius� jej=2 + jej �(k � 1) + fstretch � jej must not contain the endpoint
of another component of the curve than the one whiche belongs to in the intersection with the ball.

LEMMA 5.1. If the gap marking condition is fulfilled for
all edges of the correct reconstruction, no endpoints of the
correct reconstruction are closed by our algorithm.

Another problem is the fact that our algorithm might
not close some corners, if the samples on both legs are
so dense that there is no blue edge which could trigger a
corner exploration (see Figure 9). We can circumvent this by
postulating:

Corner Triggering: For any corner there must be a blue
edge in the correct reconstruction.

Observe that it is very simple to generate such a blue edge
by placing a sample close to the actual corner point of
the corner. Either both edges connecting the formerly last
samples of either leg to this additional sample are red then
we are done anyway, or one of them is blue, so it triggers the
corner exploration.

Furthermore our algorithm might extend a corner further
than it is supposed to do as we have seen in Figure 10.
This can be either avoided by enforcing the oversampling
condition or again by placing a sample point close to the
actual corner point which is then chosen by both legs and
hence terminates the corner exploration.

So with this additional sampling conditions and a
slightly restricted definition of curves, we obtain the follow-
ing:

THEOREM 5.1. For every collection of curves� there exists
a finite sample set such that our algorithm exactly returns the
correct reconstruction.

6 Running Time

We haven’t attempted to optimize the running time of our
algorithm. Assuming that of then = ns + nc samples we
havenc samples in corner regions andns samples in regular
parts, we can obtain a running time of O(nc �n2) with a very
naı̈ve implementation. In practice, it seems to be dominated
by the time to compute the Delaunay triangulation.



7 Implementation and Experimental Results

We have implemented our algorithm (currently without the
oversampling condition) which seems to behave well in
practice, even when using the theoretical parameters. See
Figures 12, 13, 14 for the output of the CRUST ([2]), the
CONSERVATIVE-CRUST ([5]) and our algorithm for one
particular sample set. We have not yet performed extensive
experimentation. In particular, we have not compared our
algorithm to that in [6].

Figure 12: The Crust algorithm

Figure 13: The Dey-Mehlhorn-Ramos algorithm

Figure 14: Our algorithm

8 Concluding Remarks

We presented an algorithm for curve reconstruction which
can provably handle a collection of curves with corners and
endpoints and also introduced a new sampling condition
which is not as restrictive as the sampling conditions based

on the medial axis. Even in practice the algorithm seems
to perform well. We also proved that for any collection of
curves with corners and endpoints, there exists a finite sam-
ple set from that collection for which a slight modified ver-
sion of our algorithm outputs exactly the correct reconstruc-
tion.

In two dimensions, the problem of reconstructing open
and closed curves with branching points is still open. In
three dimensions, algorithms with a guarantee only exist for
closed smooth manifolds. No algorithms have been found
yet that can handle sharp corners and ridges well, neither
in theory nor in practice. The main idea of our algorithm,
first to detect parts of the curve that are likely to be smooth
and then explore potential corners might also work in three
dimensions.
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