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Abstract tween two samples if and only if these samples are adjacent
We present an algorithm which provably reconstructs a ctie ©On @ curve il
of curves with corners and endpoints from a sample set that Obviously, it is not possible to correctly reconstruct a
satisfies a certain sampling condition. The algorithm otstu given curve from an arbitrary sample set from it. Therefore,
polygonal reconstruction that contains the edges in theecbr some restrictions are needed on the sample which specify
reconstruction of the curves and such that any additionge ethow dense a sampling has to be to guarantee a correct output
between sample points is justified. Furthermore, we showftha of the algorithm. The first algorithms for curve reconstruc-
any.such coIIegtion of c.urves, there exi;ts a sample set thath tion [3, 9, 10, 13] imposed aniformsampling condition as
a slightly modified version of our algorithm outpuéactlythe o hagically demanded that the distance between any two
corre_ct reconstruction. The algorithm also performs quigdl in adjacent samples must be less than some constant. This is
practice. not satisfactory as it may require a dense sampling in areas
where a sparse sampling is sufficient.
i ) o ] Amenta, Bern, and Epstein [2] introduced the concept of
We consider a collection of disjoint curves, each with a welhq |5c4 feature sizeThe local feature size Ifg) of a point
defined tangent at all but a finite number of points at wh@won the curve is defined as the distance tortredial axis
there is either aendpoinior acorner (at which the tangents ot this curve. The medial axis of a curve is defined as the
from both directions exist but are different). See Figure 1.oq of points in the plane which have more than one closest
point on the curve. Roughly, a neighborhood of a point of
size equal to its local feature size is intersected by theesur
in a single piece that winds up only a small angle.

Using this concept of local feature size, Ameetaal.
define a non-uniform sampling condition that allows for
sampling of variable density. Concretely, their sampling
condition states that for any poipt € T', there must be a
sample within distance Ifs(p). Then they give an algorithm
that, given a sample set from a collection of smooth closed
curves which satisfies this sampling condition for a certain
e < 1, computes the correct reconstruction. This algorithm
works by computing the Delaunay triangulation of the point
set and then filtering it to obtain the reconstruction. A

. . . . survey of algorithms based dbelaunay filteringcan be
Figure 1: A collection of curves with corners and endpointg; 4" in [8]. Subsequently, several variations that still
only handle smooth closed curves were presented [4, 12].
Given a set5 of sample points (samples) from a collect gter, Dey, Mehlhorn, Ramos [5] extended this work to
tion I" of open and closed curves, curve reconstruction is thgndle a collection of open and closed smooth curves. Their
problem of computing the graph(S,T"), called thecorrect algorithm is also based on Delaunay filtering.
reconstructionwhose vertex setiS and thathas anedge be- ~ Tpe sampling condition with respect to the local feature
size can be fulfilled for smooth curves. Problems arise,
~The author was supported by a scholarship of the Deutsciseffings- though, if the curves have corneiisg. points for which
gesellschaft left and right tangent disagree. In this case, the medial axi

TThis research was partially supported by ESPRIT LTR pra@i55 actually reaches the corners and, hence, requires an énfinit
(GALIA)
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dense sampling in the corner areas. The algorithms for Sampling Condition
smoothcurves presented so far not only fail theoretically btfihe problem of curve reconstruction as stated in the intro-
also in practice (see for example the Figures at the end®f {,ction only postulates that we connect all samples which
paper). are adjacent on the original curve. The sampling condition
Giesen [11] uses a different sampling condition for cOfith respect to the medial axis does more, though. It also
ner areas and shows that for a sufficiently dense sampligghkes sure that the sampling (and the reconstruction) does
the TSP (traveling salesman problem) tour is the correct gt miss a single feature of the original curve. So it even
construction for a single closed curve (possibly with COfuarantees that we obtain a gagbroximatiorto the curve.

ners). Althaus and Mehlhorn [1] have extended this restie question is whether we really want that. See for example
by showing that in this case the TSP tour can be compuiggyre 2.

in polynomial time. The problem with this approach is that

so far it can only handlsingle closedcurves. Recently,

Dey and Wenger [6] gave an algorithm that allegedly han- W/‘
dles well corners and endpoints in practice. The algorithm

has no guarantee and, in fact, it is not difficult to find coun-
terexamples where it fails.

In this paper, we present an algorithm that provably re- ¢ we apply the medial axis sampling condition, we are

constructs a collection of curves with'endpoints a”d_cm'”qforced to sample this curve very densely as the 'wiggling’
As in [5], when the sampling condition only estab“SheSiﬁ'}plies a very small local feature size for any point of

lower bound on the sampling density, it is not possible Et‘he curve, and the correct reconstruction of the sample set

ways to output the correct reconstruction. Instead,wefyverfS a pretty good approximation of the original curve not

that the output of the algorithm contains the correct recqp:

: . . —ojssing a single 'wiggle’. But if the only thing that we
struction and that any extra edges in the output are JUSt'f'Wimt is connecting the right samples (as stated in the aigin

Furthermore,.we present an upper bound on the Sampl'n%?&)lem of curve reconstruction), a far less dense sampling
that the algorithm outputs exactly the correct reconsioact o 014 also do. as can be seen in Figure 3

Our sampling conditions are stated with respect to the cor-

rect reconstruction of the sample set rather than with @spe

to the original curve (as in the case of the condition based WW
on the medial axis), this allows to produce a correct recon-
struction when it is possible from the samples even if it is

not a faithful approximation of the curve. Because sampling
conditions based on the medial axis have been widely used

. L ; .- Of course, now the correct reconstruction does not
we also make the following connection: If a sample is vallélj roximate the curve as with the hiaher sampling densit
with respect to the medial axis, then it is also valid with r%_pp g biing Y.

. i . : Ht nevertheless, a correct reconstruction should belgessi
spect to our sampling condition. Our algorithm is also basgS well

on Delaunay filtering. However, unlike all the previous algo So what we propose is the following: The decision of

rithms, our filtering is not a simple local rule: The algonith whether a given samole s&ffrom a collection of curveE is
first detects 'smooth’ edges reliably and then, startingnfro 9 P

the endpoints of the resulting smooth chains, it ’Walksoinva“d should_not be stated with respect to the original curve
the corners. ut rather with respect to the correct reconstructicqiy, I')

Concurrently with our work, Dey and Wenger havgfthls sample set. Such a sampling condition would allow to

developed an algorithm based on their work[@h which Skip’ details of a curve if this doeg not affect the posstb.n'
. E correctly reconstruct the curve (in the sense of our nabi
provably reconstructs a collection of closed curves with .. ... N
corners (no open curves) [7]. They also use the idea O%fmmon of t_he curve recqnstructlc_)n problem). .
i As mentioned in the introduction, one problem with a

first detecting 'smooth’ areas and then exploring corner . . . ..
. . X sampling condition with respect to the medial axis is thé fac
areas. While we have described our algorithm mostly

{hat for curves with corners, the medial axis passes through

terms of emptys-balls, they use what they call the ’ratiot corners, hence requiring a infinitely dense sampling nea
condition’ which denotes the ratio between the lengths gfe ! q 9 y ping

Delaunay edges and their dual Voronoi edges. In fact th corners. This can be fixed by relaxing the sampling condition

ese . . .
. " within controlled areas around the corners. We will use this
concepts are quite the same. The conditions under which . o i

ea for our sampling condition in the next section as well.

: . [
Lhueryé guarantee correct exploration of corners differ from We believe that a sampling condition expressed with

' respect to the correct reconstruct@ns, I') is more sensible
than a sampling condition expressed directly with respect

Figure 2: Wiggling Curve with MA sampling condition

Figure 3: Wiggling Curve with less dense sampling



to the curve (and the medial axis). However, since the e the ball intersects the curves Ihin two smooth

medial axis sampling condition has become quite a standard curve segments, which we refer to as thgsof
in recent work on curve reconstruction, we will also show the corner, each with an endpointin the corner and
that our sampling condition is implied by the medial axis the other on the boundary of the ball

condition,i.e. all sample sets of a curve that are valid with
respect to some medial axis sampling condition are alsd vali
with respect to our sampling condition, i.e. our sampling
condition is strictly weaker.

e on each leg the tangent varies by at ntgs,.

¢ for any pointss;, s, on different legs, the line
segment; sy intersects thénterior of the corner,
that is, the area of the ball on the same side of the

2.1 Our Sampling Condition Our sampling condition curve as the smaller angle at the corher

describes how the correct reconstructiofb, I') of a sample The maximal ball obtained by this is then shrunken by

setS vynh re_spect to a collectioh of open and closed CUIVeS g factor of fp,ink. The area within the shrunken ball

(possibly with corners) must look like to guarantee certain  §efines a corner area.

properties of the output of our algorithm. Let us first coesid

a collection of open and closed curves without corners: Now we have to state a weaker sampling condition for

these corner areas. First we drop the second part of the

sampling condition for smooth areas of the curve, and allow

samples on the other corner leg in theball touching an

edge from ’'inside’. Additionally, we add a condition that

makes sure that we can locally decide to which leg a sample

belongs to. Otherwise it is difficult to decide locally wheth

e the two closed ballsB,, B, of radiusr, = 3 - |e|/2 thereis acorneror notas it can be seen in Figure 5 (unless,
touchingp andq are empty of other samples we make further assumptioresg.that there is only a single

closed curve).
¢ the samples within the closed diametral ball aroeod

Sampling Condition for Smooth Areas: A sample setS
for a collection of open and closed smooth cur¥es
is valid, if for every edgee = (p,q) of the correct
reconstructionG(S, ') the following holds (also see
Figure 4):

radiusrs = fa, - |¢| can be connected in one chain that 'Smooth with 2 endpoints’
makes a total turn of less thég,; S S S S S
oo < .
Corner
o o _ , Figure 5: How to connect these samples ?

So our sampling condition for edges of the correct
reconstructiorcompletelyinside a corner region is stated as
follows:

Sampling Condition for Corner Areas: Lete = (p,q) be
an edge of the correct reconstruction completely inside
a corner region, then we postulate (also see Figure 6):

Figure 4: Sampling Condition for smooth areas « the closed ballB; of radiusf - |¢|/2 touchingp and

g from the ’outside’ of the corner is empty of other

As with the medial axis sampling condition, the prob- samples

lems arise near corners. To solve them, we first have to iden-
tify areas near a corner and then define a weaker sampling the closed ballB, of radiusg - |e|/2 touchingp and
condition for edges of the correct reconstruction which are ¢ from the 'inside’ of the corner may only contain
completely contained in such a corner region. other samples of the opposite leg ending in that corner

Ident|f|cat|0n Of corner areas: FOI’ eaCh corner gI’OW a ba” IThiS is equiva|en'[ to the corner point being on the boundarme
around the corner point as long as: convex hull of the legs inside the ball.



(with the exception of the edge connecting the last twdotation/Conventions
samples of each leg, whose inngiball may contain
samples of both legs) which are inside the unshrunk@@fner sample: We call the last samples of each legrner

corner ball samples If there is a sample close to the actual corner,
we may say that there is only one corner sample as this
« the closed balb; of radiusf;,., - |¢|/2 touchingp and sample fits into both legs.
g from the ’outside’ of the corner is empty of other . .
samples corner spanning edge: We call the edge connecting the last

samples of each legprner spanning edge

* theturn betyveeﬂ and its adjacent edges in thg corrednooth/corner area: We call the area in the shrunken cor-
reconstruction must be less thép,., (again with the ner ballcorner area the rest is calledmooth area
exception of the edge connecting the last two samples
of each leg, butincluding the 'virtual’ edges connectingmqoth/comer edge:We call an edge which lies com-
those last two samples to the actual corner point) pletely inside the shrunken corner baltarner edge

the other edges ammooth edges
e letl,,,l., be the supporting lines of two edgesand

e2 Which are on different legs; then we have that thed/blue edge: We say an edgeis red, if it has two empty
intersection poinf = I., N l., does not lie in opposite B-balls, we sa is blue if it is not red, but has empty
direction to the corner with respecthbothe; ande, (- andB,.,-balls on one side?

In the figures, we draw a small normal arrow at the
midpoint of an edge to indicate that it hdsand5;,.,-
balls on that side. So every red edge has two such
arrows, whereas every blue edge has only one arrow,
as can be seen in Figures 4 and 6.

Opeta, Bi0w: To simplify notation we writé.;, for arcsin 1

B8
andé,,,, for arcsin /3:]—

. 2.2 Medial axis sampling condition implies our sam-
“or pling condition First we identify the corner areas in the
/By same way as for our sampling condition but witf,,. =
O:urn. We then define a new local feature sizé(|f$ for any

pointp on the curve as follows:

Figure 6: Sampling Condition for corner areas e if pis notin any shrunken corner ball,'Ifg) is equal to

) ) - the distance op to the medial axis of’
We can now summarize our sampling condition.

e if p is contained in a shrunken corner ball,'{fg is

General Sampling Condition: A samplingS for a collec- equal to the distance from to the medial axis of the
tion of open and closed curvEqpossibly with corners) collection of curves obtained by removing the leg not
is valid if for any edges € G(S,T') containingp within the unshrunken corner ball

e Sampling Condition for Smooth Areas holdseif The sampling condition is then stated as follows:

's (at least partly) outside a corner region Sampling Condition w.r.t. the medial axis :

e Sampling Condition for Corner Areas holds:ifs
completely inside a corner region e for every pointp on the curves there must be a

sample within distance- Ifs'(p)
¢ Any smooth component of the correct reconstruc-

tion consists of at least 3 samples
ZClearly all smooth edges must be red, but some of the cormgseghd

. . dges that do not bel to th t istrunsight al
Before we proceed to present the algorithm in the n Y1 some edges fhat do Not belong fo the correct recons wnight aiso

section, we list some notation and conventions that will be3we define the local feature size of the comer point as thermini
used throughout the paper. distance to either medial axis



e for any edge: = (p, q) of the correct reconstruc- s’
tion and any other samplewithin the shrunken
corner ball, the angle determined byt r is less
thaneanglﬁ =7 — Blow

e any component of the collection of curves must

contain at least 3 samples Figure 7: Picking the next edge of the potential corner

COROLLARY 2.1. Any sample sef valid with respect to
the medial axis sampling condition is valid with respect
our sampling condition.

where the 'outside’ of the potential corner is, we simply try
Both possibilities.

For this step and the steps to follow, a crucial part is how
) to determine the next edge in a leg. This is done using the

Proof. Ch - = 04 ) h
roof. Chooser = 6/ following procedure (also look at Figure 7):

|

3 The algorithm FindNextEdgeG;, s;_1): Let e, = (si,s:_1) be the last
The main idea of our algorithm is that we first detect the edge detected in one leg of a corner. Assume we are also
edges that can be justified as being 'smooth’. Then start- given an orientation, i.e. we know where the 'outside’
ing from these edges we explore potential corner areas, pos- of the corner is (which implies that there are emfgty
sibly removing some of the edges previously discovered as andg;,,,-balls on that side).

smooth. o _ . Let M be the set of all blue or red edge's= (s, s;)
The following is a high-level description of our algo- | hich make a turn of less thah,,,, with e, and which

rithm: have empty3;,.,- and3-balls on the same side as
1. Compute the Delaunay triangulation®f As next edges = (s, s;), pick the shortest among the
, edges inM.
2. Among the Delaunay edges determine the set of all
edges which have two balls of radius - |e|/2 empty Having found this adjacent blue edgg we use the fact
of other samples. Color these edged that this blue edge builds a Delaunay triangle with a sample

, o on the opposite leg (follows from the sampling condition).
3. Uncolor all red edges that belong to red chains of Ieanho has no adjacent red edge, we abort the exploration,

less than 3. otherwise we pick one of the (potentially two) red edges
4. Let T be the set of samples which are adjacent gdliacentt® — let's call ite, which does not contain asam.ple
exactlyonered edge already part o, ore;. Then we 'walk’ along both (potential
corner) legs until finding the corresponding corner. As we
5. As long as there are elementslinremove one of them do not know in advance neither the orientationegf i.e.
and start exploration of a potential corner. If successfwhere with respect te, the ’inside’ of the corner is, nor the

add this corner to the séf’ of detected corners. direction ofe,, i.e. in which direction the corner lies, we just

) ) try all four possibilities®. Similarly, there might be cases,
6. Remove interfering corners frofd where only one of the (potentially two) red edges adjacent to
7. Remove some red edges that interfere with the Com%l]gads to & correct corner exploration, so we also try both

ossibilities.
Following the legs actually works step by step. We
8. Construct a collection of smooth curviésfrom H(S) first determine for each of the two current reconstructed leg
by adding small 'caps’ and corners points whether there exist potential continuation edges (usieg th
FindNextEdgeprocedure). We take the shorter of them and
Of course, the most interesting part is how to actuallifen verify whether the things reconstructed so far justify

explore potential corners. From now on, we assume tha@ner. If so, we store it if/ but nevertheless continue to
corner is represented as two sequences corresponding tagiéw the candidate legs until either

upper and lower leg ending in that corner.

in M to get the final polygonal reconstructidfy(.S). P

e for both sequences no continuations are found, or
3.1 Exploring a corner The idea of the corner exploration o _ o
is that we consider a sample€ T as starting point of a _Z‘In many cases it is possible to exclqu some of ‘the @rectamk
. . . orientations, but there are examples where it is not passibdecide which
potential corners is adjacent to exactly one red edgeand .- ion/orientation is the right one
we first try to Contmue_th'S rgd edg? with a blue edge. AS 5there is one case, where one of the red edges leads to aneictcorr
we do not know the orientation @f,, i.e. we do not know corner exploration, namely when one of them is a corner spgretge.



e asample is picked a second time, or (a) (b)
e the slope between any two segments in one candidate =~ --------.
leg is larger tham s, e - BT —————

e the supporting lines of two edges in different legs Figure 8: Cases of agreeing overlap

intersectboth in opposite direction to the corner w.r.t.

e; andes. 3.2 Removal of interfering corners Our algorithm by

) ) now has produced a collection of possible corners (repre-
When this procedure terminates, we take the last corgghted as the two reconstructed legs ending in that corner)

(which also means the 'largest’) that was successfully-vegihich might possibly interfere with each other, where we
fied (if any) and add it to the séi of potential corners (with say that two corners interfere with each other, if the oyerla
all edges of the grown corner ball as determined in the fQff the corresponding graphs has a degree 3 vertex. We dis-
lowing verification stage). tinguish two kinds of interferencaverlapandintersection

o o Two corners
3.1.1 \Verifying a cornerThe task of the verification stage,

which is called after every continuation step, is to checke overlaplf the degree 3 vertices are only caused by (at
whether the connections found so far make up a justifiable most two) corner spanning edges which cross the inte-
corner. To do this, we compute a tentative corner point and rior of the other corner. We also distinguish between:
check whether there exists a large enough ball to cover all of ] ] o

the blue edges in our current reconstruction which is empty 29reeing overlap: if both corners point into the same

of other samples (samples that are not part of the corner to direction, see Figure 8 for a schematic outline of
be verified). these cases.

Let s, and s; be the last samples in the upper and disagreeing overlap: if the corners do not point into
lower legs reconstructed so far, and tgt and ¢; be the the same direction. This case cannot happen due
corresponding last edges. To determine a tentative corner, to the the sampling condition where we disallow
we consider the two cones of andgle 6., ats, ands; that the supporting lines of two edges on different
w.r.t. e, ande;. The tentative corner poirtt is determined legs intersect in opposite direction to the corner
as (in this order): for bothedges.

e if s, is contained in the other cone, 6t= s, (and  ® intersectif they interfere but do not overlap

vice versa . . . . .
) We first get rid of the intersecting corners by just delet-

« if the cones do not intersect, the corner verification ha 1Y PaIr of corners that intersects each other. For the re
failed maining overlapping ones, we always delete the corner that
starts inside the other one, so in Figure 8, the dashed ®rner

e if the cones intersect, take the ’inner’ intersection poimOUId be deleted.

f their borders. . .
ot theirborders 3.3 Removal of interfering red edgesAt that stage we

We then determine the maximum distarfedrom C to have identified a set of potential corners, but some of them
any point in one of the sequences found so far which hag@ght interfere with red edges fpund inthe first_step, i.eyth
blue adjacent edge. We extend the two candidate legs by féigiht touch or cross a potential corner causing a degree 3
edges (if such exist) as long as the total turn (including tMertex. We will prove later on that these red edges cannot be
edges from the tentative corner poffitto the last samples part of the correct reconstruction, so we simply delete them
of the candidate legs) is less théyj,pe + ¢urn in €ach leg .
and as long as the furthest point of each leg has distance fes€correctness of the algorithm
than f,.. - D from C. If no such red edges can be foundsirst we have to prove is that if a collection of curvess
the verification fails, otherwise, we consider the ball axdu correctly sampled according to our sampling conditionnthe
C with radius f,,0,, - D. If it contains other samples tharthe correct reconstruction is part of the output gr&pts)
the one present in the two sequences, the verification failf,our algorithm ('Good edges are captured’). Of course
otherwise we check that all blue edges only contain in theie could satisfy this by returning the complete Delaunay
innerf;,.,-balls samples of the opposite leg within the growmiangulation of the sample set. So as in [5] we also have to
ball, and that any connection between samples of differ@mbve that there exists a collection of cur#&dor which S is
legs intersects the interior of the corner. a valid sampling (with a slightly weaker sampling condijion



and H (S) is the correct reconstruction éf with respect to

I'" (Captured edges are good’). 3t is in some sense a
certificate for the reasonability of each edge our algorithm
has constructed.

When choosing appropriate parameters for the sampling oo’ ’

condition and the algorithm like

A Figure 9: Densely sampled legs of a potential corner
B =2<% abeta = 300 Blow = % = elow ~ 60

oturn = 10° oslopﬁ = 300
Opan = 30° faia ~ 2.84
fshrink = 4.71 forow =~ 1.86

we obtain the following two theorems:
Figure 10: Corner extended by another sample

THEOREM4.1. Let T be a collection of open or closed

curves possibly with corners, be a set of samples from that i )

collection meeting our sampling condition. Then each ed%’@ samples (which has to be outside the unshrunken corner
of the correct reconstructio(S, I') is present in the graph Pall Of the correct corner, of course). Note that this is

H returned by our algorithm with the only possible exceptidR@inly due to our relaxed sampling condition which uses
of edges spanning a comner of the curve. a constant foé,,,., independent of the angle at the actual

corner. Later we will show how to exclude that case as well
THEOREM4.2. For any input sample sef, our algorithm Without sacrificing the constafit.,,., angle.

returns a graphH and a collection of curveE’ such thatS In the following we elaborate on these two theorems
is a valid sample set far’ with: but do not include the proofs which can be found in the full
version of this paper.
B’ = B Bl’ow = Blow
0, = Brurn 0. 1ope = Ostope + Brurn 4.1 Good edges are captured (Theorem 4.1ptG(S,T)
frin=1 0) .1 = Ovant be the correct reconstruction 8fwith respect to a collection
1 _fgrow of curvesl’. We will show in the following that ifS is a valid
Sshrink T -2 sampling of", then every edge of @¥(S, T') will be detected

and 'survive’, and therefore be present in the oufiudf our
andH = H(S,I"), i.e. H is the correct reconstruction algorithm (with the exception of corner spanning edges).
of S with respect td"'. The following lemma does not require proof:

Remarks One might wonder why Theorem 4.1 excludésEMMA 4.1. Smooth edges are detected and colored red by
corner spanning edges 6#(S,T) in the guarantee for thethe algorithm after the first 2 steps.
output of our algorithm. One reason for that is that if the

. What we have to prove now is that smooth edges will
two legs of a corner are sampled so densely that there i ; . . .
. . . ot be killed later on because of interference with a poéénti
no blue edge, our algorithm cannot find a starting poin

. e rner:
for the corner exploration, so it finds all edges except fop e

the corner spanning edge (see Figure 9). Observe that thisqma 4.2. A smooth edge cannot:

also makes sense, because if the two legs are very densely

sampled, it may well be the case that the original curve doe$. 'touch’ a (wrong) corner from outside at a sample

not have a corner there but just two endpoints. We will Which is not a corner sample

need this 'conservative’ behaviour of our algorithm latar o

when we modify the sampling condition and our algorithm®:

to get a result of thg type=or every collection Qf curves with 3 195’ an incorrectly detected corner

corners and endpoints, there exists a sampling such that our

algorithm outputs exactly the correct reconstruction So now we know that every smooth edge of the correct
The other reason for a corner spanning edge possibly retonstruction will survive the stages of our algorithm and

being detected is that our algorithm manages to extend ktience be present in the output. Let us now consider the

corner further by one or more samples. See Figure 10. Heom-smooth edges of one particular corner. First we will

the actual corner would be the dashed one, but the algoritsihow that there is a canonical elemente S such that

was able to justify the extended corner which also includégshe algorithm starts a corner exploration fram it will

‘touch’ a corner at a corner sample



detect a potential corner which covers all the edges of thwe the algorithm which covers all edges of that corner. It
real corner we are considering (possibly even more, as rgenains to show that for every corner, one of them survives
have mentioned before). the next stages.

To prove this we first have to state a small lemma which
implies that if we are given a correct part of the sequencelogfMMA 4.5. The reconstruction of a correct corner cannot
samples on either leg (together with an orientation whege the intersected by the reconstruction of a 'wrong’ corner.
'outside’ is), our procedur&i ndNext Edge() will find
the next edge of this leg (if it exists). LEMMA 4.6. At least one corner exploration covering (at

least) all edges of a corner in the correct reconstruction
LEMMA 4.3. Lete = (s1,50) be an edge of the correctsryives all stages of the algorithm.

reconstruction within a corner area, oriented such that the
‘outside’ of the corner lies to the left @Tm, and lets be the We have proven that every edge of the correct recon-
other sample whicl, is adjacent to. Assuming thatlies struction is detected by the algorithm and survives till the

on the same leg as ands,, then there is no other sampié end (expect for corner spanning edges). So ’all good edges
such that the following conditions all hold at the same timgire captured'.

e the turn-angle betweenande’ = (s',s1) is less than

915'11,7“7’:,

4.2 Captured edges are good (Theorem 4.Basically
almost all statements of Theorem 4.2 follow directly from
e d(s1,s") <d(s1,8) the algorithm. The only statement that requires a proofas th

statement that for every corner, the ball of radiug 1- %

does not intersect any segments of the output graph which

Now we know that if we have somehow managed tre not part of the the two legs ending in that corner, where

find the right 'start’ of the corner, i.e. correctly determéh » is the radius of the extended corner ball. But this can be
the start of the two legs ending in that corner, there will kgasily seen, as the distance of any edt@the center of the

a time during the algorithm’s execution where exactly thgended corner ball must be greater than/1 — %' since
correct edges of the corner have been detected (except[ for

the corner spanning edge). This can be easily seen by {ng must have an empty-ball on that side, hence the ball
fact that we always extend with the shorter continuatioreed®f radiusr - /1 — 3> cannotintersect any of these segments.
and therefore first all edges within the corner area are picke

before connecting to outside the corner area. 4.2.1 Construction of a collection of Witness Curve$"’

To show that for every corner there exists a good stafts our sampling condition does not directly refer to the
ing point for the exploration, follow the red edges of the-coturvature of the curve, we can construct witness curves by
rect reconstruction on both legs until hitting an edge of tlsémply taking the polygonal reconstruction computed by our
correct reconstruction which is not red (or reaching a corrslgorithm and adding very small 'caps’ at every sample
sample). Lety,, p, be the samples obtained by this procevhich is adjacent to two non-corner spanning edges. Corner
dure. If both are corner samples, we don’t even have to stgshnning edges are replaced by two edges to the corner point
a corner exploration as all edges of the correct reconsnictestimated by the algorithm.
are already detected (except for the corner spanning edge).
Otherwise at least one of them is not a corner sample ahd.2 Witness Curves with respect to the medial axis
has no other (wrong) adjacent red edge. If it is exactly ondsing the same idea as in [5], we can prune the output of
then this is a good starting point for the corner exploratiopur algorithm even further and then construct curves as in
if both are not corner samples and do not have other (wroifj), which are then witness for the sampling condition with
adjacentred edges, one of them will be a good starting poiispect to the medial axis.
We call this thecanonical corner exploration

It remains to prove that at the point when exactly tt® How to obtain exactly the correct reconstruction ?

correct edges have been detected, the verification test Wil gigorithm as outlined so far guarantees that all edges
pass. of the correct reconstructio of the original collection of

LEMMA 4.4. At the time when the correct edges of a 'reafUrVesl’ are present in the outpd of our algorithm (with

corner have been detected, the verification test will pass f§€ €xception of the corner spanning edges), but there might
f < (Fohrink — 1)/2 be additional edges in the output, though our algorithm can
grow = shrink .

justify’ each of them.
So now we know that for each corner of the correct The ultimate goal, of course, is to find a sampling con-
reconstruction, there is at least one reconstruction tetedition and an algorithm which for any collectidhof curves

i —
e there is an empty-ball to the left ofs’, s,



@ eoeee *eeeee It should be clear how to modify the algorithm to reject
edges which are unreasonable due to oversampling. The
way we can now find an appropriate sample set to get rid
0) oo e of the gap closing edges is that we first take a valid sample
set with respect to our original sampling condition and then
add samples on the edges close to a gap until this edge gets
rejected due to the oversampling condition. We can also turn
this directly in a sampling condition:

with endpoints and corners guarantees that the output of the ) )
algorithm is exactly the correct reconstructi@ns, T'), ifthe ©ap Marking: For any edge of the correctreconstruction,
sample sef conforms to this sampling condition. all diametral balls around with radius< |e|/2 + [e| -

To reach this goal, one first has to restrict the possible (¥ = 1) + fstreten - |¢| must not contain the endpoint
curves allowed if. Given any sample sef, it is always of another component of the curve than the one which
possible that the original collection of curvés consists e belongs to in the intersection with the ball.
exactly of those sample points, i.e. each curvel'ins

Figure 11: Connegt andg or not ?

LI%MMA 5.1. If the gap marking condition is fulfilled for
el ‘edges of the correct reconstruction, no endpoints of the

There is no way the algorithm can detect this. So it see irect reconstruction are closed by our algorithm.

reasonable to restrict the curves allowedIlirnto be non-

degengrate, i.e. each curve must consist of more than just popnother problem is the fact that our algorithm might

one point. not close some corners, if the samples on both legs are
The second difficulty arises in cases as sketched in Figr qense that there is no blue edge which could trigger a

ure 11. With the current sampling condition and algorithmgrner exploration (see Figure 9). We can circumvent this by
the algorithm would connegt andq even if they are end- postulating:

points in the correct reconstruction, provided there are no
samples in the neighbourhood which are insideAHealls Corner Triggering: For any corner there must be a blue
of (p, q). edge in the correct reconstruction.

Note that in Figure 11,(a) it really seems reasonable - .
to connectp andq as the edgép, ¢) would be very long Observg that it is very simple to generate such a blug edge
compared to the other edges in that chain. On the other h d,placmg a 'sample close to the act.ual comer point of
one should definitely not reject an edge q) just becauset e corner. Either both edges connecting the formerly last

let's sayq's other adjacent edge is very short as shown ﬁqmples of either leg to this additional sample are red then
Figure 11,(b) we are done anyway, or one of them is blue, so it triggers the

; ; .. corner exploration.
So we propose the following oversampling condition: Furthermore our algorithm might extend a corner further
Oversampling-Condition: Lete = (p, ¢) be an edge in athan it is supposed to do as we have seen in Figure 10.
potential reconstruction of a sample set. FurthermofBis can be either avoided by enforcing the oversampling
let 1, g2, s, - .. qx be the samples in the chain whegondition or again by placing a sample point close to the
following the chain adjacent tg, and letp,, p,, ps, actual corner point which is then chosen by both legs and
...qx the samples adjacentto hence terminates the corner exploration.
So with this additional sampling conditions and a
[ightly restricted definition of curves, we obtain the ¢olt

e qi,...q existandVi = 1...(k — 1) we have ing:
el > fotreten - d(gi; i), THEOREMS5. 1. For every collection of curves there exists

® p1,...pp €Xistandvi = 1...(k — 1) we have afinite sample set such that our algorithm exactly returmes th
el > fatreten - d(pi, pi—1), correct reconstruction.

We saye is not reasonable due to oversampling, if eith%

If we use for examplé = 5 andf,;e;cn = 2 this means

. ) Running Time
that for one particular edge the longest edge amongst its g ,g o o
neighbours on either side must be at least half as lorg as Ve haven't attempted to optimize the running time of our
So we add the following condition: algorithm. Assuming that of the = n, + n. samples we

haven. samples in corner regions ang samples in regular
Minimum Sampling Condition: For each component ofparts, we can obtain a running time of/iQ - n2) with a very
the collection of curve§, there must be either 0 samnaive implementation. In practice, it seems to be domihate
ples or more thak samples. by the time to compute the Delaunay triangulation.



7 Implementation and Experimental Results on the medial axis. Even in practice the algorithm seems

We have implemented our algorithm (currently without tH@ Perform well. We also proved that for any collection of
oversampling condition) which seems to behave well f{/rves with corners and endpoints, there exists a finite sam-
practice, even when using the theoretical parameters. glesset from that collection for which a slight modified ver-
Figures 12, 13, 14 for the output of the CRUST ([2]), thalon of our algorithm outputs exactly the correct recorstru
CONSERVATIVE-CRUST ([5]) and our algorithm for onef'on- . . .
particular sample set. We have not yet performed extensive In two dimensions, the problem of reconstructing open

experimentation. In particular, we have not compared c¥ffd closed curves with branching points is still open. In
algorithm to that in [6]. three dimensions, algorithms with a guarantee only exist fo

closed smooth manifolds. No algorithms have been found
;’ “\ \ yet that can handle sharp corners and ridges well, neither
¥
l
\

i

in theory nor in practice. The main idea of our algorithm,
first to detect parts of the curve that are likely to be smooth
and then explore potential corners might also work in three
dimensions.
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