
Smooth-Surface Reconstruction in Near-Linear Time
�

Stefan Funke
�

Edgar A. Ramos
�

Abstract
A surface reconstruction algorithm takes as input a set of sample
points from an unknown closed and smooth surface in 3-d space,
and produces a piece-wise linear approximation of the surface that
contains the sample points. Recently, several algorithms with a
correctness guarantee have been proposed. They have unfortunately
a worst-case running time that is quadratic in the size of the input
because they are based on the construction of 3-d Voronoi diagrams
or Delaunay tetrahedrizations which can have quadratic size. In
this paper, we describe a new algorithm that also has a correctness
guarantee but whose worst-case running time is �������
	����� where� is the input size. This is actually optimal. As in some of the
previous algorithms, the piece-wise linear approximation produced
by the new algorithm is a triangulation which is a subset of the 3-d
Delaunay tetrahedrization.

1 Introduction
We consider the problem of computing a piecewise linear
approximation � – more specifically, a triangulation – to a
smooth surface � from a subset ����� of � points. We re-
fer to � as a sampling (set) from � , and to each ����� as
a sample (point). This problem has received considerable
attention in computer graphics and more recently in compu-
tational geometry. In the former area, we only mention the
early work by Hoppe et al [17] and by Curless and Levoy
[10], and more recently, the work of Bernardini et al. [5]
and of Gopi et al [16] (the latter two are closer to the work
in computational geometry). These algorithms do not have
a correctness guarantee. In the latter area, recently, an al-
gorithm (CRUST) with a correctness guarantee under a cer-
tain sampling condition was proposed by Amenta and Bern
[1], and a simplified version of it (COCONE) was described
by Amenta et al. [2]. Other algorithms have been pro-
posed by Amenta et al [3] (POWER CRUST) and Boissonnat
and Cazals [7] (interpolation based on natural coordinates).
Given a “valid sampling” � , the CRUST and COCONE algo-
rithms output a set of triangles in the Delaunay tetrahedriza-
tion of � , which form a surface that approximates and is

�
Partially supported by the IST Programme of the EU as a Shared-

cost RTD (FET Open) Project under Contract No IST-2000-26473 (ECG
- Effective Computational Geometry for Curves and Surfaces). An ex-
panded and updated version of this paper can be obtained from www.mpi-
sb.mpg.de/˜ramos�

AG1, Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85,
Saarbrücken, Germany. E-mail: � funke,ramos � @mpi-sb.mpg.de.

also topologically equivalent to � . The POWER CRUST al-
gorithm outputs a subset of a power diagram (the dual of
a weighted Delaunay triangulation) of the set of points �
with some appropriate weights. The algorithm of Boissonat
and Cazals uses the Voronoi diagram of the samples to ob-
tain some “natural coordinates” that are then used to obtain
the reconstruction, and also outputs a set of triangles in the
Delaunay tetrahedrization. Since computing a (weighted)
Voronoi diagram or its dual Delaunay tetrahedrization for �
requires �! "�$#&% time in the worst case [13], these previous
algorithms have also this quadratic worst case time behav-
ior. On the other hand, since the size of � is linear in � , a
natural question is whether a surface reconstruction can be
computed in near linear time. This is important in practice
because current scanning techniques produce a number of
samples in the order of several hundred thousands or even up
to a million. One can ask whether the worst case quadratic
size of Delaunay triangulations can occur for a set of sam-
ples from a smooth surface. Recent work of Erickson [15]
shows that there are smooth surfaces with uniform sets of
samples that have a Delaunay tetrahedrization of quadratic
complexity. Therefore, even if the original COCONE algo-
rithm uses an output sensitive algorithm for computing the
Delaunay tetrahedrization [9], it could not achieve a sub-
quadratic worst-case running time. In [11], an implemen-
tation of the COCONE algorithm was described, which runs
in time '("�*),+.-/�0% if the sampling is “locally uniform”. In
this paper, we continue with that work and describe a new al-
gorithm that works for any valid sampling and has a correct-
ness guarantee, and whose worst-case running time is near
linear. In fact, the running time is optimal: '("��)1+2-3�0% where� is the input size. As in some of the previous algorithms,
the new algorithm outputs a triangulation that is a subcom-
plex of the 3-d Delaunay tetrahedrization; however, this is
obtained by computing only the relevant parts of the 3-d De-
launay structure. The algorithm first estimates for each sam-
ple the surface normal and a parameter that is then used to
“decimate” the original sampling. The resulting sampling is
locally uniform and so a reconstruction based on it can be
computed using a simple and fast algorithm as in [11]. For
completeness, since [11] is not widely available, we describe
here this basic algorithm. In a last step, the decimated points
are incorporated into the reconstruction. In order to achieve
the faster running time, the algorithm uses approximations
in the solution of several subtasks. Though the correctness

guarantees (pointwise and normal approximation, topolog-
ical correctness) of the resulting algorithm are the same as
for previous algorithms (e.g., the COCONE), the penalty for
using approximations to achieve a faster running time is that
some of the constants involved in the correctness statement
are worse (for example, the new algorithm is only guaranteed
to work for a denser sampling).

Contents. (2) Valid Sampling and Correct Reconstruction;
(3) The COCONE Algorithm; (4) Approximation Tools; (5)
Locally Uniform Sampling; (6) Basic Algorithm; (7) Outline
of the New Algorithm; (8) Estimation; (9) Decimation; (10)
Final Reconstruction; (11) Concluding Remarks.

2 Valid Sampling and Correct Reconstruction
We review the framework of “valid sampling” and “correct
reconstruction” developed in [1].

Medial Axis and Sampling Condition. The medial axis of
a surface � in 465 is the closure of the set of points which
have more than one closest point on � . The local feature
size lfs 7�8% at a point �9�:� is the distance from � to the
medial axis of � . An important property of lfs ;% is that it is
1-Lipschitz, that is, lfs
�<%�= lfs ">?%0@BAC�8>DA for any �FEG>(�H� .
A set � of sample points from � is said to be an I -sampling
from � if every point �J�K� has a sample in � within
distance I lfs 7�8% .

Figure 1: A curve in the plane with its medial axis and a set
of samples from the curve. The density of a valid sampling
depends on the distance to the medial axis.

Voronoi Diagram and Delaunay Triangulation. The
Voronoi diagram Vor "�L% of a set of points � in 4 5 is the
decomposition of 4 5 into (convex) cells of points with the
same set of nearest neighbors. Assuming general position,,
Vor "�L% consists of polyhedrons MDN for �O�P� , polygons MQN&R
for �0EG>S�T� , edges MQN&RVU for �0EW>XEVYZ�[� , and vertices MDN\RVUW]
for �0EG>XEGY^EW_`�T� (many of these are empty). The Delaunay
tetrahedrization Del "�L% is the dual structure: for each cellMba where ced�� , Del ;�L% includes the simplex conv ;c�% .
Thus, Del ;�L% consists of tetrahedra, triangles, edges and
points.

Restricted Voronoi Diagram and Delaunay Triangula-
tion. The Voronoi diagram Vor f gF "�L% of � restricted to �
consists of the cells M a f gih:M akj � for cldm� . It is said
to satisfy the ball property if each M a f g is a topological ball:

if M a is a polyhedron, a polygon, an edge or a vertex then
respectively M a f g is topologically equivalent to a polygon,
a segment, a point, or empty. Then, the Delaunay triangu-
lation Del f gF "�L% of � restricted to � is the structure dual to
Vor f gF "�L% : for each nonempty M a f g in Vor f g$;�L% , Del f gF "�L%
contains the simplex conv "cn% .
Correct Reconstruction. If � is a “valid sampling” from �
then Vor f gF "�L% satisfies the ball property and Del f g0 ;�L% is a
“correct reconstruction” of � . More precisely, Amenta and
Bern [1] have shown that:

THEOREM 2.1. There exists Iponqsr such that for all It=uIpo ,
smooth surface � in 4 5 and I -sampling � dv� , w�xh
Del f g0 "�L% satisfies:

(i) BIJECTIONykz w�[{|� , determined by closest point, is a bijection.

(ii) POINTWISE APPROXIMATION
For all }P�H� , ~8 �}FE y "}8%V%�h�'(;Ip# lfs "}8%V% .

(iii) NORMAL APPROXIMATION
For all }O�Z� , ��� g �}<%����g y �}<%V%3h�'("I�% , where ��� ��D%
is the (outside) normal of � at � .1

(iv) TOPOLOGICAL CORRECTNESS� and w� have the same topological type.

Unfortunately, different surfaces � with the same sampling
set ��d�� correspond to different triangulations Del f g$;�L% .
That is, we cannot aim to construct Del f g0 ;�L% . However,
Amenta et al [1, 2] have shown that an equally good triangu-
lation can be determined (with possibly worse approximation
constants). We describe next their COCONE algorithm.

3 The COCONE Algorithm
For points � and � , let �{�p� denote the vector from � to � . Let� o be a parameter with r�� � o ���F�?� . For a sample � with
estimated normal w� N , its co-cone region co-cone 7�0E w� N E � o %
is the set of points > for which the angle between �{��> and w� N
is in "�F�?� � � o EV�F�.�8@ � o % . We also denote the co-cone region
briefly with ��N , when the other parameters are understood.
The algorithm of Amenta et al. [2] proceeds in four steps:

1. DELAUNAY TETRAHEDRIZATION. Compute Del "�L% .
2. NORMAL ESTIMATION. For each sample �P�Z� obtain

an estimate w� N of the surface normal at � as follows: Let
w� N be �{��� or � �{��� , where � is the furthest circumcenter
over all tetrahedra in Del "�L% incident to � (this includes
tetrahedra with a point at infinity). [Dually, � is the
vertex of MQN furthest from � .]

1For �� the normal is well-defined in the interior of triangles; at edges
and vertices, it can be defined as an interpolation from that at the incident
triangles.

θ

Figure 2: The candidate triangles for � are those Delaunay
triangles incident to � that are nearly orthogonal to estimated
normal at � and have empty sphere close to equatorial.

3. CANDIDATE TRIANGLES. Put a triangle � h� �<��� # � 5 � Del f g0 ;�L% in the set � of candidate tri-
angles, if � has a circumcenter within � N\ for each �8¡ ,
where � N\ h co-cone
�8¡VE w� N¢ E � o % . [Dually, if there is a>��T£&¤ within � N\ for each �8¡ , where £�¤ is the Voronoi
edge dual to � .]

4. SURFACE EXTRACTION. Extract from � the approxi-
mating surface � .

In Step 2, the sign is determined so that the normals are
consistently oriented in all points. This can be achieved
by propagating this information through close neighbors.
Intuitively, Step 3 selects a Delaunay triangle if (i) its normal
is “close” to the estimated normal of its vertices, and (ii) it
has a circumsphere that is “not far” from being “equatorial.”
Step 4 selects from the candidate triangles a subset that
makes up a closed surface (see [1] for details). Its success
is guaranteed by the fact that Del f g0 ;�L%�d�� . For this, time
linear in the number of candidate triangles suffices. Since
this step requires only linear time in the number of candidate
triangles, we do not need to worry about the details later
when we describe a faster implementation of the COCONE
algorithm under a uniformity condition.
Correctness. Amenta et al. show that if � is a valid
sampling from a smooth surface � , then � approximates� ; more precisely: Though � cannot be guaranteed to be
Del f g0 ;�L% , it is as good in that it approximates � as stated in
the theorem above.

THEOREM 3.1. There exists I\�Z=9IWo such that for all I�=I�� , smooth surface � in 4¥5 and I -sampling �vd¦� , the
triangulated surface �* "�L% output by the COCONE algorithm
satisfies the same approximation bounds as in the theorem
above (possibly with different constants).

How small one can choose the parameter
� o in the algo-

rithm, depends on I . In the COCONE algorithm
� o is set to

the value corresponding to the largest I for which the algo-
rithm works.
Worst-Case Running Time. A priori, since the construction
of the Delaunay tetrahedrization has a quadratic worst-case

running time, so does the COCONE algorithm. A more care-
ful analysis is required since it could be the case that the
quadratic behavior do not occur for a set sampling a smooth
surface. This has been investigated by Erickson [15]. For
example, he describes how the usual quadratic construction
consisting of points on two line segments can be “embed-
ded” on a smooth surface. This example also shows that the
number of candidate triangles can be quadratic in the worst-
case, so it is not feasible to obtain a better algorithm by com-
puting the candidate triangles in an output-sensitive manner,
say similar to the method in [9] to compute a Delaunay tetra-
hedrization. The previous example is however unsatisfac-
tory in that the sampling is highly non-uniform. Erickson
provides another construction in which the quadratic con-
struction is part of a locally uniform sampling from a smooth
surface.

4 Approximation Tools
In this section, we describe the approximation tools used in
the surface reconstruction algorithm. We briefly review the
basic tools – balanced decomposition trees and well sepa-
rated decompositions – and indicate their use to our specific
purpose: approximate § nearest neighbor, approximate range
reporting, approximate neighborhoods and “Lipschitzation”.

4.1 Balanced Decomposition Trees and Applications
Balanced Aspect Ratio (BAR) trees [12] and Balanced Box

Decomposition (BBD) trees [4] are hierarchical decomposi-
tions of the space determined by a set � of � points. They
can be efficiently computed in time '(���)1+2-��0% , require stor-
age '("�0% , and can be used to answer approximate nearest
neighbor and range reporting queries.

Approximate Nearest Neighbors. A § -th nearest neighbor
(NN) of a point > in � is a point �P�P� such that at most § �!¨
other points in � are closer to > than � , and at least § �©¨ other
points are no farther from > than � . A § -th ª�« -approximate
nearest neighbor (ª&« -ANN) of > is a point �H�P� for which~8 ">XE;�8%©=9 ¨ @uª\«�%/¬~8 ">XE;��®�% where �8® is a § -th NN of > ; §
different points �$�E"� # E\¯&¯\¯&E"�8°i�±� are §Zª&« -ANNs of > if~8 ">XE;��¡²%(=³ ">XE"�8¡1´ � % , and �8¡ is an µ -th ª « -ANN of > . Note
that if � � E\¯&¯\¯¢E;� ° are §¶ª « -ANNs of > in � with � ° a § -thª « -ANN, then all �[�·� with ~8 ">XE;�8%*=±~� ;>XE"� ° %G�Q ¨ @¸ª « %
are included in � � E\¯&¯\¯¢E;� °�¹$� .

In our reconstruction algorithm we need a data structure
that for a query point > reports §�ª�« -ANNs of > in �
efficiently. For constant ª�« , data structures presented using
BBD [4] and BAR [12] trees can be constructed in time'("��)1+2-��0% and they report a set of §uª&« -ANNs in time'(")1+2-3�º@·§D% . The constant factor in the query time depends
on ª\« , but since we do not need to choose ª« too small, this
dependency is not important.

Approximate Range Reporting. In several parts of our

algorithm, given a set of points � in 4 5 , we need to report
those points inside a query sphere. It does not seem possible
to implement this query exactly within the time bound we
are aiming. Therefore, we use approximate range reporting.
This means that for some ª a , all the points within distancewc�N from � are reported as well as some within distance
between wc N and ¨ @Tª&a�%Qwc N .

For constant ª a , the data structures in [4] and [12] also
provide an efficient implementation: The query time is'(�),+.-3�`@¸§D% where § is the number of points reported.

4.2 Well-Separated-Pair Decompositions
Given a set »ed¼4 5 , let size "»*% denote the radius of the
smallest ball enclosing » (this is not essential, we could
also use the smallest enclosing axis-aligned box which is
simpler to compute). Given two sets »LEW½¼�T4 5 , let A¢»¾½SA
denote the distance between the centers of their smallest
enclosing balls; » and ½ are said to be well-separated ifA¢»t½�A¾¿s_À¬\Á(Â?Ã<Ä size ;»¾%¢E size "½!%pÅ , where _ is a parameter
referred to as the separation. The interaction product »SÆS½
is the set Ä2ÄG�FEG>ÇÅ z �|�|»LEW>��È½`E"�¦ÉhÊ>ÇÅ . A well-
separated-pair decomposition (WSPD) of � is a collection
of well-separated pairs Ä» ¡ EG½ ¡ Å where » ¡ EG½ ¡ dÈ� with
each Ä�» ¡ EW½ ¡ Å a well-separated pair, and with �:Æ��ËhÌ °¡,Í � » ¡ ÆB½ ¡ as a disjoint union. Callahan and Kosaraju
(1995) have shown that a WSPD of size '(�_ 5 �0% can be
constructed in time '(���),+.-3�·@Î_ 5 �0% . Their construction
is based on a tree decomposition �|h|�© ;�L% of the point
set: each node Ï of the tree is associated with a subset »�Ð
of � so that the root associated with � and the � leaves
associated with the singleton sets; the sets associated with
the left and right children, Ï^Ñ and Ï U , of a node Ï are obtained
by splitting the smallest enclosing rectangle of »nÐ with a
plane parallel to its longest side at its middle point. We call
the sets » Ð clusters. Their WSPD consists of well-separated
cluster-pairs Ä» ¡ EW½ ¡ Å where » ¡ and ½ ¡ are clusters in � .
We omit a description of how the decomposition is obtained.
If Ä�» ¡ EW½ ¡ Å is in the WSPD, we say that » ¡ and ½ ¡ are
direct partners. For our purposes it suffices to be familiar
with the structure of the resulting construction: Each cluster» Ð in � has associated a set Ò Ð of direct partners Ò Ð hÄ�½�Ð�Ó � EG½�Ð�Ó # E\¯\¯&¯\EW½*Ð¢Ó °�Ô Å . In particular, it is important that
all the interactions of a point ����� with the other points� � ÄG�0Å can be captured by traversing the path in � from
the root to the leaf � . For a node Ï in � , let Õ¾ ;ÏD% be the set
consisting of Ï and its (proper) ancestors in � , and let

Ò ´Ð h Ö×ÇØ.ÙÛÚ Ð¢Ü Ò × E
the set of inherited partners of »�Ð (inherited from its ances-
tors in �). Also let ÒÞÝÐ h�Ò ´Ðkß Ò3Ð , the set of all partners of» Ð . Thus, the set ÒtÝN hàÒÞÝá N�â of partners of � cover all the
interactions of � .

We will be interested in computing for every �[�[� some
quantity ãà
�8%�h�ãà CÄW�$Å/Æ� "� � ÄW�$Å^%V% that depends on the
interaction of � with all the other points. In general, this com-
putation would require quadratic time, so we will specifically
consider an approximate version äãà
�8%�hàäãå
�FEVÒÞÝN % that de-
pends on the interactions of � with all its well-separated part-
ners. This approximate version can be efficiently computed
under the assumptions:

(i) for each well-separated pair »LEW½ , äãà ;»LE\Ä�½æÅ^% can be
computed in time '(¨ % [base case];

(ii) äãm ;»LEGÒÀ% and äãà "»LEGÒ ® % can be combined into
äãm ;»LEGÒ ß Ò�®,%V% in time '(¨ % [merging];

(iii) for »t®0du» , äãà "»©EVÒ�%�h äãà ;»t®�EVÒ�% [inheritance].

Then the äãå
�8% ’s can be computed using linear time by per-
forming a top-down traversal of � that computes äãà ;» Ð EGÒ�ÝÐ %
for each Ï : when visiting Ï , it computes äãm ;» Ð EVÒ Ð % , in
time '(Gç Ò Ð ç % , making use of assumptions (i) and (ii), and
then combines it with äãå ;» parent Ú Ð\Ü EVÒÞÝparent Ú Ð\Ü % to obtain

äãå ;» Ð EGÒ�ÝÐ % , in time '(¨ % , making use of assumption (iii).
Thus, the total time is '(²è Ð ç Ò Ð ç % , which is '(��0% .

We will use this computation scheme several times, and we
will refer to it as a WSPD-computation. For example, let us
consider ãà
�8% to be a ª^é -approximate closest neighbor of �
in � � ÄG�$Å . We take _*h��! ¨ �^ªé�% so that ¨<� ªéZ%\A\»t½�A*=A���>DAº=à ¨ @uªéP%\A\»t½�A , for a well-balanced pair »©EG½ and�ê�O»©EG>æ�ê½ . Then the base case is ãà ;»LE\Ä�½æÅ^%/h9A\»t½�A ;
merging is simply taking the closest and inheritance is clear.

4.3 Approximate Neighborhoods
In our estimation, we will use the concept of approximate
neighborhood (AN) of a point. For a fixed angle ë , an ap-
proximate neighborhood of � is a subset AN 7�8%¾h AN ì8 7�8%
of � such that for any >º�P� � ÄW�$Å there is >?®$� AN
�<% such
that ��>p��>^®$=së and A���>DA¾¿� ¨F� ª&ìX%\A���>^®²A where ª�ìºh�íGî,ïtë
(see Fig. 3). In general, it is not necessary that AN
�8%td�� .
An AN can be obtained by covering the space of directions
with a set of cones of angle ë ,2 a ë -cone covering of ��#
for short, and then selecting in each an approximate closest
point. Clearly, ð� G ��F�?ë<%V#% cones of angle ë are necessary to
cover the space of directions.

AN’s can be obtained through a WSPD-computation using
overall time '(���),+.-/�0% . First, let � ì be a ë -cone covering
of � # . For each split-tree set » , let YQ "»*% be a representative
point (YQ "»*% may be a point not in » , e.g., the center of the
smallest enclosing sphere). For each split-tree set » , we want
to compute an approximate neighborhood AN "»nÐQEGÒ ÝÐ %·h

2More precisely, a cone with apex ñ , axis òó ô and angle õ is the set of
all points ö such that the angle between the vector from ñ to ö and òó ô is no
greater than õ .

2φ

Figure 3: Approximate neighborhood of a sample point.

ÄÇ "÷?E"�8øW% z ÷æ�u��ìbÅ , where �<ø is an “approximate neighbor”
of » in the cone ÷ (but it may be outside of it). In particular,
AN �ÄG�0Å2EVÒÞÝá N�â % will be an AN of � . We only need to specify
(i) and (ii) in the WSPD-computation scheme:

(i) For a well-separated pair »LEW½ , AN "»©E¢Ä�½`Å% consists
of "÷?EVYQ "½!%V% where ÷O��� ì is the cone containing the
vector from YQ "»*% to YX ;½º% , and "÷^E�ùi% for all other ÷ ;

(ii) given AN "»©EVÒ�% and AN ;»LEVÒ�®1% , they are merged into
the set AN "»©EVÒ ß ÒÀ% consisting of the pairs ;÷^E"�<% such
that "÷^EW>?%©� AN "»©EVÒ�% , ;÷^EG>?®,%!� AN "»LEGÒÀ®,% , and � is
the closest to YQ "»*% among > and >?® .

Clearly, both operations can be performed in time '(¨ %
(actually in time '(Gç � ì ç %�hú'(G ��F�?ë<%V#%), assuming that
the representatives YQ "»*% are available. Because of the
approximations involved the choice of a representative and
the inheritance in the WSPD-computation, the result is not
a ë -AN, rather a ûêë -AN for some constant ûË¿ ¨ . With
an arbitrary point of » as YQ "»*% , ûýüeþ , see Fig. 4. A
better û is possible if YQ "»*% is allowed to be other than a
point in » . For example, if YQ ;»¾% is the center of the smallest
enclosing ball, and for a cone ÷ with apex at � , � ø in ;÷^E"� ø %
is taken to be on the axis of ÷ and at the same distance to� as the closest representative in the cone; then û üÿ� .
Different variants of the method and better analysis should
be investigated to improve the value of this constant. We
will assume that YQ "»*%º�T» , so that »��T
�<%ndÎ����ÄG�$Å , but
this is not essential.

In the subsequent presentation, we use ë<o for the angle
used in the approximate neighborhood (recall that

� o is the
parameter in the COCONE algorithm),

4.4 “Lipschitzation”
Our definition of local uniform sample involves an � -
Lipschitz function: For �¼qKr , a function � z ��{ 4 ´
has the � -Lipschitz property if for any }FEV�±�m� , �¥ �}8%O=�¥ ��D%�@��ÀA�}��$A . Given an arbitrary function � z �¼{ú4 ´ ,
there are two “natural” ways to extend it to � and make it � -
Lipschitz; they correspond to whether small or large values

p

p’

B

A

C
r

A’

q

q’

φ

φ

φK

Figure 4: Ä�»©EG½æÅ and Ä�»¾®;EW�ºÅ are direct cluster-pairs; »*®
is a cluster contained in » and so inherits ½ as a partner.
The points �0E"� ® EG>XEGY are the representatives of the clusters»©EG»¾®"EW½`EW� respectively. The cones with angle ë and apex �
and ��® are corresponding ones in the cone covering at � and
at �8® . The point >?® in ½ is within a cone with apex at �<® , axis�8®7Y and angle approximately þXë .

at points in � dominate:

L �	�¥ "}8%vh Á(î1ïN Ø�
 Ä��¥
�<%$@�ÀA�}2�AÅ��
L ���¥ "}8%vh ÁæÂ^ÃN Ø�
 Ä��¥
�<% � �ÀA�}2�A^Å2¯

A simple calculation shows that these functions are indeed� -Lipschitz.
Though L �	� and L ��� are defined everywhere on � (this

is needed in the analysis), we are interested in computing
them only for points in � . Unfortunately, a exact computa-
tion of them requires quadratic time. So, we describe here
approximate versions that will suffice in our application and
can be computed in time '("�0% (given a WSPD). First, we say
that a function � z�� {x4 is ª -approximately � -Lipschitz
if for all }0EV�s� � , �¥ "�Q%`=� ¨ @�ª?%¢ ��¥ "}8%�@��ÀA�}��ÛA&% . The
approximate versions, denoted w � � and w� � , will be defined
by their implementation through the WSPD-computation ap-
proach. Let � z � { 4 ´ be given. Then we can define� � and � � on subsets of � as � � "»*%*hmÁ(î,ï N Ø�� �¥ 7�8% and� � ;»¾%ZhlÁæÂ?Ã N Ø�� �¥
�8% . The basis of the computation is
w���	�¥ ;»LE\Ä�½æÅ^%*h����! "½º%�@���A\»t½�A , merging is defined by
w���	�¥ ;»LEGÒ ß Ò ® %HhJÁ(î1ï$Äw�����¥ "»©EVÒ�%�EGw �����¥ ;»LEGÒ ® %pÅ . This
defines w����� for ����� ; for }�É��� , we define w���	�¥ "}8%!h
L ���¥ �}<% . In what follows, let ªé be the approximation er-
ror introduced by the WSPD-computation. We have that w ���
is a “good approximation” to L � and is approximately � -
Lipschitz:

LEMMA 4.1. If � z ��{J4 with ���s� , then:

(i) For }H�Z� ,

 ¨�� ª�éZ% L ���¥ �}8%�=uw�����¥ �}<%À=± ¨ @iª�éZ% L �	�¥ "}8%��
(ii) For }0EV�S�H� ,

w���	�¥ "}8%À=B ¨ @��.ªéS%\ ;w�����¥ "�D%$@�ÀA�}��ÛA&%�¯

For our application, L � rather than L � is the relevant oper-
ator. Unfortunately, the approximate operator w�� � obtained
analogously to w� � , but substituting max for min, does not
lead to the desired properties: the resulting function may not
be approximately � -Lipschitz. This is a result of the sub-
straction in the definition. We define then w ��� as w���*w�� � f
 ,

that is, first apply w�� � and then apply w� � to the result-
ing function restricted to � . w�!��� is certainly ¨ @"�.ªéZ% -
approximately Lipschitz, since it uses w��� as the last opera-
tion in its definition. It remains to verify that w� � is a “good
approximation” to L � and is approximately � -Lipschitz:

LEMMA 4.2. If � z ��{J4 with ���s� , then:

(i) For }H�P� and for >º��� , respectively,# $&%(' �*)Q�,+ -/.10243�5 �C�7698;:1<�=æ� ' �?>D��8O�76@8�<A=(�CB9DE)�>�Dp�GF#$&%(' �*H��JI -/.10243�5 � ' �?>Q��8O�76@8�<�=(�CB9D�>�H�DW�LK
(ii) For }0EG�S�P� ,

w�!���¥ "}8%À=B ¨ @��.ªéZ%¢ ;w���;�¥ ��D%$@���A¢}b�$A\%¢¯
5 Locally Uniform Sampling
The new reconstruction algorithm takes advantage of the fact
that it is easier to compute a reconstruction for a “locally
uniform” set of samples. The concept of local uniformity
used in [11] is not sufficient for our purposes. We will not
assume that the input sampling is locally uniform; rather, it
will be enforced algorithmically through decimation, and for
this we need an appropriate definition (which in the end more
or less implies that in [11]).

The I -sampling condition imposes an upper bound on the
sampling density. A possible uniformity definition is also
impose a lower bound by requiring that the samples are not
too close to each other:
TIGHT I -SAMPLING: For a constant fraction M qúr , a
sample �m�u� is a tight I -sampling if

(i) for all }H�P� , ½¶ "}0EGI lfs �}8%G% j �:Éh�N
(ii) for all �P��� , ½¶
�FEEM3 ;I lfs
�<%V%V% j ��h�ÄG�$Å .
Since we want the reconstruction algorithm to enforce

the uniformity condition on the sample (by decimating), to
obtain a tight I -sampling one would have to estimate lfs
�<% ,
for �P�P� . Unfortunately, at this point, we do not know how
to do this efficiently. Furthermore, the algorithm would have
to know the value of I . So, we have an alternative definition
which is appropriate for our algorithm.
LOCALLY UNIFORM I -SAMPLING: A sample �Ëd � is
a locally uniform I -sampling, if there is a control functionOTz �[{J4 ´ and constants r(�P�/EEM�EWª©� ¨ , such that:

(i) O is ª -approximate � -Lipschitz

(ii) For all }H�P� , ½¶ "}0E O "}8%G% j � Éh"N
(iii) For all �P�P� , ½¶ 7�0EEM O 7�8%G% j �Bh�ÄG�0Å
(iv) For all }H�P� , O �}<%�=¸I lfs "}8%

Intuitively, the function O "}8% controls the local density of
samples: it upper bounds the largest empty ball around } ,
and multiplied by the factor M , it lower bounds the largest
empty ball around a sample � . A tight I -sampling is also
a locally uniform I -sampling with appropriate constants. A
locally uniform sample has several useful properties.

LEMMA 5.1. For parameters r³�xI�EQ�/EEM3EGª�Rÿ� ¨ , and
constants ÷1SÊ= ¨ �.�T� and ÷4Uv= ¨ �?�T� � ¨ , there are
constants ÷AV�EQW S EEW U such that the following holds for any
smooth surface � and for any locally uniform I -sampling �
from � , with parameters �3EQM�EGª R :

(i) BOUNDED-RATIO PROPERTY
For each �P��� , if > and >?® are a nearest and a furthest
neighbor of � in Del f gF "�L% , then A���>?®;A*=s÷ V AC�8>DA .

(ii) BOUNDED-INCREASE PROPERTY
For each }P�H� , ½S �}0EGY?% j ��h�N implies ç ½¶ "}0EW÷ S Y?% j�`çX=�W S ¯

(iii) SMALL-SIZE-NEIGHBORHOOD PROPERTY
For each �P�P� , ç ½S
�FEG÷ U Y¢N2% j �`çX=PW U E where Y¢N the
radius of M N f g .

The proof of the Bounded-Ratio Property also implies
that the degree of each sample in Del f g0 "�L% is bounded
by a constant, and that the triangles in Del f g0 ;�L% are well-
shaped. The Small-Size-NeighborhoodProperty will be used
to argue that the Basic Algorithm (see Section 6) runs in
time '(���),+.-/�0% (it implies that the Voronoi cell of a sample� inside the co-cone can be computed considering only a
constant number of neighbors of �).

6 Basic Algorithm
We assume that a locally uniform I -sampling � d �
is given, and that an estimate of the surface normal w�$N
at each � � � is already available. We describe an
implementation of the COCONE algorithm that under these
assumptions run in time '("��)1+2-3�0% time. For each sample � ,
it determines successively a larger neighborhood of � until all
the samples necessary to determine the portion of MbN inside
the co-cone are collected. The correctness of this algorithm
follows directly from the correctness of the general COCONE
algorithm. It has the advantage that it is still correct even
when the sample set is not locally uniform (though then the
running time is not longer '(���),+.-3�0%).
Recall that for a sample � with estimated normal w�ÛN , its co-
cone region �3Nnh co-cone
�0E w�$NXE � o�% is the set of points > for

which the angle between �{��> and w�$N is in ��F�.� � � o?EV�F�.�Q@ � o�% ,
where

� o is a constant angle (derived from the analysis).
We describe an alternative implementation of Step 3 in the
COCONE algorithm. The algorithm assumes the availability
of a data structure for reporting ª a -ANNs in � (see Section
4).
Algorithm. We only need to describe how to compute the
candidate triangles (Step 3); the surface extraction (Step 4)
is as in the original COCONE algorithm and we do not need
to elaborate. For each �H�P� , starting with say ÷Þh"X , repeat
the following:

1. ��NZY set of ÷3ª a -ANNs of �
2. Compute the Voronoi cell MDN of � with respect to all

samples in �nN .
3. Let ~\[9]E^ be the maximum distance from � to points on

Voronoi edges of M N within � N .
4. if ÁæÂ^ÃbR Ø «�_6~� 7�0EG>?%�q`�b ¨ @iª a %�~ [9]E^ then exit

5. ÷aYÈ�*¬\÷
Then, output a triangle � as candidate if its dual edge

appears in M N within � N for each vertex � of � .
Correctness. The algorithm makes sure that the co-cone
region of each Voronoi cell (with respect to the estimated
normal) is computed exactly: further nearest neighbors are
added until one can be sure that the co-cone region is not
affected anymore. Therefore, the correctness argument in
[2] applies as well.
Running Time. It is easy to see that, without the uniformity
assumption on the sampling, the algorithm has a worst-case
running time '(��0#Û),+.-��0% . Under the uniformity assumption,
the running time is considerably improved.

Let ����� and let Y?®N be the distance to a furthest point>^® on an edge of MQN inside ��N . The algorithm stops when it
ensures that all samples yet to be considered are at distance
at least �.Y^®N , and so they cannot affect the Voronoi diagram
inside the co-cone. We verify that the Bounded-Increase
Property implies that at most a constant number of points
are considered in computing the co-cone of � .

LEMMA 6.1. There are constants � and W U such that the
following holds: Let � be a locally uniform sampling, and
for �P�Z� let Y^®N the furthest distance from � to an edge of MDN
within the co-cone region �3N . Then the number of samples
which have distance less than �?Y?®N ¨ @iª a % from � is at mostW�b .

The particular use of ÷cU in the proof, determines a con-
straint on � (since ÷cU¸= ¨ �.�T� �k¨) and hence on I for which
the algorithm works. We will see later that �u¿�ûê®,I , whereûO® is a constant, and in a limit case (when certain ª ’s be-
come zero) this becomes �¼¿d�2I . In this latter case, we

obtain the constraint IL= ¨ �TXb "÷ U @ ¨ % . For example, for Ipo
so that e = ¨ �TX and with ª a = ¨ ��X , we have ÷ U hgfQ¯?f and�T= ¨ � ¨ � and It= ¨ �þÇr .

We conclude that under these conditions the cost of com-
puting the co-cone for each sample is '(�),+.-/�0% , and so the
total construction time is '("�*),+.-3�0% .
THEOREM 6.1. Assuming that � is a locally uniformI � sampling of the surface � (with appropriate parameters
as discussed above), all candidate triangles can be deter-
mined in time '("��)1+2-��0% , and so the modified COCONE al-
gorithm runs in time '(���),+.-��0% .
7 Outline of the New Algorithm
The new reconstruction algorithm follows an approach that
we call “Decimate-and-Conquer.” The input sampling is
“decimated” to obtain a subsampling that is locally uniform
and on which the Basic Algorithm efficiently produces a re-
construction. Finally, the decimated samples are introduced
into the final reconstruction.

Input: A finite sample set � from an unknown surface � in
3-d space.
Output: A triangulation � on � that approximates � .

1. ESTIMATION
For each sample �ê�O� estimate the surface normal w� N
and the decimation radius wc�N .

2. DECIMATION
Obtain a locally uniform subsample h�du� (using wc�N).

3. INITIAL RECONSTRUCTION (Conquer)
Obtain a reconstruction �À® based on h using a Basic
Algorithm.

4. FINAL RECONSTRUCTION (Consolidate)
Obtain a reconstruction � based on � as Del f ikjV ;�L% .

The Basic Algorithm used in Step 3 has already been
described. In the next three sections, we describe each of
the remaining three steps.

8 Estimation
The Estimation Step obtains an estimate of the surface
normal at each sample point, and an appropriate control
function, the decimation radius, which is then used in the
next step to decimate the input sampling.

8.1 Normal
The surface normal at �P��� is estimated as follows:

1. Let > � be the point in AN ì�l2
�<% nearest to � .

2. Let > # be the point in AN ì l.
�8% that is nearest to �
among those that form with >^� and with respect to �

an angle greater than mD« , where mQ« is an absolute
constant.

3. Let w�ÛN be the normal to the triangle
� ��>^�p> # (with

appropriate orientation).

Again here, the appropriate orientation is chosen so that it
is consistent over the surface.
Correctness. The two vectors � {�2�<� and � {�.� # are approxi-
mately orthogonal to the normal at � , as guaranteed by the
following lemma from [2]:

LEMMA 8.1. Let }FEV}8®$�H� with ç }b}8®CçX=u÷\I<¬ lfs �}<% , ÷*=`n � .
Then ç � � {}b} ® �!o � �F�.�bçX=uíVî,ï ¹$� "÷\I��.�.% .

Therefore, since the angle between these vectors is not
too small, the normal to the plane they determine is an
approximation of the normal at � :

LEMMA 8.2. If � is an I -sampling from � ,then ���0N w�ÛNOh'("I�% .
Let w� N the plane through � that is normal to w� N , that is, w� N

is the estimated surface tangent plane at � .

8.2 Decimation Radius
Intuition. Let Y N be the radius of the smallest ball centered
at � that contains M N f g (i.e., the distance to the furthest
restricted Voronoi vertex). Intuitively, in decimating � , it
is safe to keep �e�È� and delete all the other samples

r
p

Figure 5: Assuming the sampling condition holds, the radius
of the restricted Voronoi cell Y¢N gives information (a lower
bound) on the local feature size (more precisely on I lfs).
On the right, we can see that many “redundant” samples
are eliminated if one decimates the samples inside the ball
centered at � and with radius proportional to Y N .

within a radius proportional to Y N . However, in order to
obtain a graded sample set, the decimation radius should be� -Lipschitz for an appropriate �9q³r (see Section 4). So,
let us then define O o z � { 4 ´ as O o 7�8%�h ¨ @��¥%CY N ,
and O � z � { 4 ´ as L � O o . We claim that O � has
the following properties, for I·= ¨ �T� , �³¿p�.I : For each}|�K� , O � is � -Lipschitz; ½¶ �}FE O �. �}<%V% j � Éh,N ; and

O �? �}8%¶=� ¨ @��T�¥%�I lfs "}8% . Thus, O � is a lower bound forI lfs and captures the requirement that there must be a sample
nearby.

Actual Implementation. Certainly, we cannot determine Y&N
as we do not even know � . Instead, we obtain a related value
wY N that will serve the same purpose and that can be computed
for all samples within '("��)1+2-3�0% time. Let M N hÈM N "�L%
be the Voronoi cell of � with respect to � , and M N f g be its
restriction to � .

For each � , we determine a point wq N (not necessarily on �)
and its distance wY¢N to � such that

(R1) ½S
�FE& ¨ @iª S % w Y¢N.% contains M N f g , and

(R2) there is a point q N �P� “close” to wq N with

½¶ q NDE& ¨�� ª S % wY¢N2% j �Bh�NQE
for a constant ª4S that depends on

� o and ë o . The point wq N is
determined as follows:

1. Let wM N be the Voronoi cell of � with respect to AN ì�l? 7�8%
restricted to w�bN .

2. Let wq N be the vertex of wMQN furthest from � and let wY¢N beAC� wq NbA .
To see that (R1) holds, note that since ½¶ 7�0E wY&N.% contains
wM N , then an expanded ball ½¶ 7�0E� ¨ @�ªcS3% wY N % includes all ofM N j � N (the co-cone region of �), where ªcS is an appropriate
fraction that depends on

� o . Since M N f g9dJM N j � N then½S
�FE& ¨ @uª1S3% wY N % contains M N f g . Fig. 6 illustrates why (R2)
holds: the ball ½S wq N E wY N % is empty of approximate neighbor
points; then the shrunk ball ½S wq NDE& ¨¾� ª^®S % w Y�N2% is empty of
all samples, where ª?®S is again an appropriate fraction that
depends on

� o and ë�o ; then the point q N on � closest to wq N
satisfies ½¶ q NQE� ¨�� ª S % w Y�N2% j �±h"N where ª S is a constant
slightly larger than ª?®S .

rs

tutvuv
wx

2φ

p

q

rR

R’
R’’

Figure 6: Estimation of furthest restricted Voronoi vertex.
The diagram on the right allows to obtain a bound on the
shrinking ª ®S that a Voronoi sphere with respect to � N needs
to undergo in order to be empty of points in � . Clearly, ª2®S
decreases as ë o decreases.

Now, we can define the approximate versions of O o and O � .
Let ª\o be a constant whose value will depend on the other ª
parameters. For �P�P� let

wO o2 7�8%3hÎ ¨ @��%\ ¨ @iª¢o% wY¢N
and then let

wO �Þh w��� wO o.¯
Now, we verify that wO � has the desired properties to play the
role of a control function.

LEMMA 8.3. Let

û h G ¨ @��¥%¢ ¨ @Tª\o�%0@��/ ¨�� ªéP%V%\ ¨ @¸�?ª S %÷ R h ¨ @y�.ª�é�%\ "ûi ¨ @iIp%$@��¥%�¯
with ª¢o¶¿±ª S @��.ª�é and � so that ûOI©=z�� ¨*� ªéZ% , and
let ª R h"�.ªé . Then wO � has the following properties:

(D1) wO � is ª R -approximately � -Lipschitz.

(D2) For all }P�H� , ½S �}FE wO �. �}<%V% j � Éh�N .
(D3) For all }P�H� , wO �? "}8%À=u÷ R I lfs �}8% .

In the case that all ª ’s are zero, we obtain ûxh ¨ @��T� .
Then, to satisfy the constraint �mq:ûOI , it is sufficient that�[¿P�2I .

Let wcÞN�h{M wO �? 7�8% with r��|M¼� ¨ be the decimation
radius.

9 Decimation
The Decimation Step uses wc N to eliminate some sample
points and obtain h�du� that is locally uniform. It works as
follows:

1. hzY{N , �n®&YJ�
2. Repeat

(a) �}Y next from �n®
(b) hzY~h ß ÄG�$Å
(c) �n®&YJ�n® � ½¶
�FEDwcÞN2%

3. until �n®8h"N
The range reporting in Step 2(c) is implemented approxi-

mately (see Sec.4) with error parameter ª a . With this, the
total time is proportional to '(���),+.-3�¾@ è R Ø�� §ÇR\% where §ÇR
is the number of points reported when > is considered. The
analysis later will show that è R §ÇRnh�'(��0% (the uniformity
of h implies that each point of � is reported only a constant
number times; thus we do not need a dynamic data struc-
ture). For >!��h , let � R be the set of points decimated by > .
We use wc�NLh�M wO �.
�<% with r(��M[� ¨ .
LEMMA 9.1. The decimated sampling h has the following
properties:

(D4) For >º��h , ½S ">XEEM wO �? ;>?%V% j h�h�Ä�>ÇÅ .
(D5) For }O�Z� , ½¶ �}FE�m wO �. �}8%G% j h Éh�N where

mZh ¨ @M3 ¨ @Tª&a¥%\ ¨ @iªcR¥%
¨�� ��M3 ¨ @Tª a %¢ ¨ @Tª R % ¯

(D6) h is an ;÷ g I�% -sampling where ÷ g h�÷4R�m .

If all the ª ’s are zero, then we have m�h� ¨ @�MF%W�Q ¨À� ��MF%
and ÷ g h� ¨ @¸�T�¥%¢ ¨ @MF%G�D ¨Þ� ��MF% . As an illustration, let�Th ¨ ��X and MTh ¨ . Then I�= ¨ � ¨ �!hBrb¯ r�fTXD¯,¯,¯ , mkh ¨ �2��f ,÷ V h�� , and ÷ g h ¨ XX�Tf�h��b¯ � . Thus, in decimating, we lose
about a factor of 3 in the “quality” of the sample. For a fixed� , there is a trade-off between ÷ a and ÷ g depending on the
choice of M . As another example, let �·h ¨ ��X and Mêh ¨ �þ ,
then ÷ S h��.rX�?�T�Hh ¨ ¯ �2rD¯,¯1¯ , ÷ a h ¨ �?rX���Oh ¨ �b¯ �\�D¯,¯1¯ , and÷ g hsþÇrÇ�?����h ¨ ¯����\�D¯,¯ . In the limit as MO{Jr , ÷ g { ¨ @[��� .
One can also vary � as long as �2IL=�� ; in the limit In{ r ,÷ g { ¨ .
10 Final Reconstruction
The last step computes � h Del f ikjV "�L% where ��® is the
initial reconstruction. In analogy with Del f g$ "�L% , which we
know it is a correct reconstruction, we expect � to be also a
correct reconstruction except that with somewhat degraded
approximation constants. The computation of � is done
individually for each triangle �3h � ��>Y in ��® .

In summary, for each ���H��® , two steps are necessary:

1. Collect the set of relevant points � ¤ ds� .

2. Compute Del f ¤ �� ¤ % .
In Step 1, we seek a set such that Del f ¤ ��©¤�%3h Del f ¤ "�L% . At

the same time, we do not want to take too many points. Let_&¤ be the circumsphere of � with center in the plane of � and� ¤ the corresponding ball. A possible solution is to collect
those >u��h whose decimation ball ½S ">XE�wc�R\% intersect

� ¤ .
A simpler procedure which captures some more points is to
collect the set h ¤ of those >s��h that are contained in

� ¤
enlarged by a certain constant factor. Here, we use again
approximate range reporting. Then � ¤ h Ì R Ø���� �æR , the set
of sample points decimated by the sample points in h ¤ .

In Step 2, after appropriate geometric transformations,
Del f ¤ ��L¤�% can be computed using a 3-d convex hull algo-
rithm. So the running time is '(Wç �º¤\çC),+.-¾ç �L¤¢ç % .

Using the local uniformity property of h , we can verify
that è ¤ ç �©¤�çXh�'(��0% and so the overall running time of this
step is '("�*),+.-/�0% .
Correctness. We want to verify a correctness guarantee
for the reconstruction � similar to that for the COCONE
algorithm. The main geometric claim in this direction is that
the Voronoi edges that intersect �À® are nearly orthogonal to
it. This will imply that the corresponding dual triangles in

Figure 7: The 3-d Voronoi diagram restricted to a triangle is
computed using all the relevant points that were decimated.

� have normals close to that of the surface, and that the
reconstruction is topologically correct. The proof is as in
[2].

The fact that the Voronoi edges that intersect ��® are nearly
orthogonal implies that � approximates � pointwise and in
normal, and also that � has the correct topology (because it
implies that Del f i�jV ;�L% satisfies the ball property [14]).

11 Concluding Remarks
There are several issues that deserve further investigation:
(a) The constants in the running time and storage space need
to be improved before the algorithm becomes practical. In
particular, WSPDs should be avoided if possible.
(b) We would like to be able to estimate the local feature size
efficiently, say in overall time '("��)1+2-3�0% . Then, with our
decimation procedure, we could do surface simplification to
the extent allowed by a particular I .
(c) We would like to handle surfaces with borders and sharp
edges. This is considerably harder. Specifically, the desired
algorithm should output a description of the borders and
edges detected. Here, there seems to be a connection to
the curve reconstruction problem: detecting the border and
edges can be seen as a variant of that problem.
(d) The framework used ignores completely the possible
anisotropy in the curvature of the surface. The reconstruction
of our decimated sampling has triangles that have good
aspect ratio. In reality, triangles that are elongated in the
direction of smaller curvature might be more desirable.
(e) We also ignore completely additional information that
may be available with the capture of the data. In particular,
with the viewpoint information.
(f) Finally, we ignore noisy input.
Acknowledgements. The authors acknowledge discussions
with Pankaj K. Agarwal, Tamal K. Dey, Jeff Erickson, Sariel
Har-Peled, Susan Hert and Kurt Mehlhorn.

References

[1] N. Amenta and M. Bern. Surface reconstruction by Voronoi
filtering. Disc.Comput. Geom. 22 (1999), 481–504. Earlier

version appeared in Proc. 14th ACM Sympos. Comput. Geom.,
39-48, 1998.

[2] N. Amenta, S. Choi, T. K. Dey and N. Leekha. A simple
algorithm for homeomorphic surface reconstruction. In Proc.
16th ACM Sympos. Comput. Geom. (SoCG 00), 213–222,
2000. To appear in Int. J. Comput. Geom. Appl.

[3] N. Amenta, S. Choi and R K. Kolluri. The Power Crust,
Union of Balls, and the Medial Axis Transform. Submitted to
Int. J. Comput. Geom.

[4] S. Arya, D. M. Mount, N. S. Netanyahu and R. Silverman. An
optimal algorithm for approximate nearest neighbor searching
in fixed dimension. J. ACM 45(6):891–923, (1998).

[5] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva and
G. Taubin. The ball-pivoting algorithm for surface reconstruc-
tion. In IEEE Trans. Visualization Comput. Graphics 5 (1999),
349–359.

[6] J. D. Boissonat. Geometric structures for three-dimensional
shape reconstruction. ACM Trans. Graphics 3 (1984) 266–
286.

[7] J. D. Boissonat and F. Cazals. Smooth surface reconstruction
vial natural neighbor interpolation of distance functions. In
Proc. 16th ACM Sympos. Comput. Geom. (SoCG 00), 223–
232, 2000.

[8] P. Callahan and R. Kosaraju. A decomposition of multidimen-
sional point sets with applications to � -nearest neighbors and� -body potential fields. J. ACM 42 (1995), 67–90.

[9] T. M. Chan, J. Snoeyink, and C.-K. Yap. Output sensitive
construction of polytopes in four dimensions and clipped
Voronoi diagrams in three. In Proc. 6th ACM-SIAM Sympos.
Discr. Algorithms (SODA 95), 282–291, 1995. Journal version
in Disc. Comput. Geom.

[10] B. Curless and M. Levoy. A volumetric method for building
complex models from range images. In Proc. ACM Siggraph,
303–312, 1996.

[11] T. K. Dey, S. Funke and E. A. Ramos. Surface Reconstruction
in Almost Linear Time under Locally Uniform Sampling. Eu-
ropean Workshop on Computational Geometry, Berlin, March
2001.

[12] C. A. Duncan, M. T. Goodrich and S. G. Kobourov. Balanced
aspect ratio trees: Combining the advantages of � -d trees and
octrees. In Proc. 9th ACM-SIAM Sympos. Discr. Algorithms
(SODA 98), 1998.

[13] H. Edelsbrunner. Algorithms in Combinatorial Geometry.
Springer Verlag, Heidelberg, 1987.

[14] H. Edelsbrunner and N. Shah. Triangulating topological
spaces. In Proc. 10th ACM Sympos. Comput. Geom. (SoCG
94), 285–292, 1994.

[15] J. Erickson. Nice point sets can have nasty Delaunay triangu-
lations. Proc. 17th ACM Sympos. Comput. Geom. (SoCG 01),
96–105, 2001.

[16] M. Gopi, S. Krishnan and C. T. Silva. Surface reconstruction
based on lower dimensional localized Delaunay triangulation.
In Eurographics 2000, M. Gross and F. R. A. Hopgood (Guest
Eds.) Blackwell Publishers, 2000.

[17] H. Hoppe, T. Derose, T. Duchamp, J. McDonald and W. Stuet-
zle. Surface reconstruction from unorganized point clouds. In
Proc. of ACM Siggraph, 71–78, 1992.

