
A Combinatorial Algorithm for Computing a Maximum
Independent Set in a t-perfect Graph

Friedrich Eisenbrand ∗ Stefan Funke∗† Naveen Garg ‡ Jochen Könemann §

Abstract

We present a combinatorial polynomial time algorithm
to compute a maximum stable set of a t-perfect graph.
The algorithm rests on an ε-approximation algorithm
for general set covering and packing problems and is
combinatorial in the sense that it does not use an explicit
linear programming algorithm or methods from linear
algebra or convex geometry. Instead our algorithm is
based on basic arithmetic operations and comparisons
of rational numbers which are of polynomial binary
encoding size in the input.

1 Introduction

A stable or independent set S ⊆ V of an undirected
graph G = (V,E) is a subset of the nodes of G which
are pairwise nonadjacent. The stable set problem is
the problem of finding a stable set of a graph G with
maximum cardinality. It is NP-hard [5].

The stable set problem can be formulated as an
integer program with the following linear programming
relaxation:

max ∑
v∈V

yv(1.1)

{u,v} ∈ E : yu + yv ≤ 1
u ∈V : yu ≥ 0.

This linear programming relaxation (1.1) has frac-
tional vertex solutions. An odd cycle of G is a multiset
C = {v1, . . . ,vk} of nodes such that k ≤ |V | is odd and
{vi,vi+1} ∈ E for all i = 1, . . . ,k−1 and {vk,v1} ∈ E 1.
If C is an odd cycle, then each characteristic vector of a

∗eisen,funke@mpi-sb.mpg.de , Max-Planck-Institut für
Informatik, Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany

†Partially supported by the IST Programme of the EU under
contract number IST-1999-14186 (ALCOM-FT).

‡naveen@cse.iitd.ernet.in , Indian Institute of Technol-
ogy, Department of Computer Science and Engineering, Hauz Khas,
New Delhi 110 016, India

§jochen@cmu.edu , Carnegie Mellon University, GSIA 211
Posner Hall, Pittsburgh, PA 15213. This material is based upon
work supported by the National Science Foundation under Grant No.
0105548.

1If C is just a set, we have a simple cycle; but here we are also
allowing non-simple cycles.

stable set of G satisfies the odd cycle inequality

(1.2) ∑
v∈C

yv ≤ b|C|/2c.

For a graph G we denote the polytope defined by
the inequalities (1.1) and all corresponding odd cycle
inequalities (1.2) by Podd(G).

A graph G is t-perfect, if its corresponding odd
cycle polytope Podd is a 0/1 polytope. The study of these
graphs was suggested by Chvátal [2]. The odd cycle
inequalities can be separated in polynomial time [6],
i.e., one can decide in polynomial time whether one of
the inequalities (1.2) violates a given point x∗ and if so,
compute such an inequality. It follows thus from the
equivalence of separation and optimization [9, 11, 8]
that the ellipsoid method [10] can be used to optimize
a linear function over Podd(G) in polynomial time and
consequently solve the weighted stable set problem for
t-perfect graphs in polynomial time. The ellipsoidal
algorithm is heavily based on division, rounding and
approximation. This is partly due to the fact that,
conceptually, one even leaves the field of rationals and
needs to compute square roots. This introduces the
issue of necessary accuracy such that the algorithm is
guaranteed to run in polynomial time and to produce
correct results in the bit-model. Moreover, the ellipsoid
method is considered to be highly impractical.

1.1 Main results. We provide the first combinatorial
algorithm for computing a maximum stable set in a
t-perfect graph. This we achieve by considering the
dual of the linear programming relaxation of the integer
program for the maximum stable set in t-perfect graphs.
The dual, which is a covering problem, can be solved
to within a (1+α) approximation using a combinatorial
algorithm for approximating fractional set cover. For
a suitable choice of α this leads to a procedure for
computing the size of a maximum stable set in a t-
perfect graph which is then used to construct the actual
stable set.

We believe that such an approach could be applied
to other combinatorial optimization problems for which
the only algorithms known are based on the ellipsoid
method. Further, while our algorithm for maximum sta-
ble set in t-prefect graphs does not significantly out-
perform the algorithm based on the ellipsoid method, it
does provide a combinatorial approach to this problem,

which we believe can be fine-tuned to obtain a much
faster algorithm.

1.2 Related work. Combinatorial algorithms for the
stable set problem of t-perfect graphs are not known
and a non-polyhedral characterization of the class of t-
perfect graphs has, so far, not been provided. However
some subclasses of t-perfect graphs have been identi-
fied which can be characterized and recognized in poly-
nomial time. These include bipartite graphs, almost bi-
partite graphs [4], series parallel graphs [1, 2], graphs
that do not contain an odd K4 [6] and graphs that do
not contain a so called bad K4 [7]. Combinatorial algo-
rithms for the stable set problem have been provided for
bipartite graphs, almost bipartite graphs [4] and series
parallel graphs [1, 2].

The search for combinatorial algorithms for poly-
nomial problems for which only ellipsoidal algorithms
are known has stimulated a lot of research in the field
of combinatorial optimization. Recent breakthroughs
include the combinatorial algorithms for submodular
function minimization [14, 13] and the combinatorial al-
gorithm for path-matching problems [15].

The combinatorial algorithm for approximating
fractional set cover is an unpublished result of Garg and
Könemann; both the algorithm and its analysis are a
straightforward extension of the greedy algorithm for in-
tegral set cover [3]. Similar such algorithms have been
obtained by Plotkin, Shmoys and Tardos [12] using La-
grange relaxations and by Young [17, 18] using the tech-
nique of oblivious rounding.

2 A (1 + α)-approximation algorithm for the
fractional set cover problem

The minimum weight set cover problem is defined as
follows. Given a universe U = {e1, . . . ,en} of n ele-
ments, a (potentially exponential-size) collection S =
{S1,S2, ...,Sk} of subsets of U and a cost function c :
S → Q+, find a subset of S of minimum cost which
covers all the elements in U .

The problem can be formulated as an integer linear
program with the following linear programming relax-
ation:

min ∑
S∈S

cSxS(2.3)

e ∈U : ∑
S :e∈S

xS ≥ 1,

S ∈ S : xS ≥ 0.

In this section we will present a combinatorial (1+
α)-approximation algorithm for the linear programming
relaxation of the set cover problem.

We will first review the well-known greedy ap-
proach which computes an integral feasible solution
with an approximation ratio of O(logn), see, e.g. [16,

p. 108]. For this we consider the dual linear program of
the set cover linear program (2.3):

max ∑
e∈U

ye(2.4)

S ∈ S : ∑
e∈S

ye ≤ cS

e ∈U : ye ≥ 0.

In each round, the greedy algorithm picks a subset
S ∈ S which minimizes the ratio ρS = cS/(∑e∈S re),
where re denotes the ’requirement’ of element e, i.e. we
have re = 1 if it is not covered by any set which we
have picked so far, re = 0 otherwise. In the following
we assume that we can find such a subset S ∈ S with
minimum ρS value in polynomial time (which is trivial
if the cardinality of S is polynomial, but requires special
care when |S | is superpolynomial).

We set re = 0 for the newly covered elements e ∈U
in this round and proceed until all e ∈ U are covered.
How can we bound the ’quality’ of this solution?

Consider the dual of the set cover linear pro-
gram (2.4). In each round, when picking a set S (and
therefore setting re = 0 for all e ∈ S which were not
covered before), we set each dual variable ye of the
newly covered elements of this round to the fraction
of the cost cS according to its requirement which is
ye := cS · re

∑r f
r f

= ρS ·re.(Here, of course, we have re = 1,
but we will later change the algorithm such that values
re /∈ {0,1} might occur.)

Clearly, in any stage of this algorithm we have
∑S∈S xScS = ∑e∈U ye, but only the primal solution is
feasible at the end. How ’infeasible’ can the dual
solution be? Consider the constraint for one particular
S ∈ S in the dual

∑
e∈S

ye ≤ cS,

and assume that e1, . . . ,em is an ordering of S according
to the time when the elements of S are covered. We
claim that yei ≤ cS/(m− i + 1). Assume that S′ is the
set that first covers ei. As S′ is chosen in such a way
that the average cost of the newly covered elements
in S′ is minimum, this average cost must be less than
the average cost of the elements which would be newly
covered by S. At this point in time, there are at least
m− i + 1 uncovered elements of S and therefore ye ≤
cS/(m− i+1). Hence we have

∑
e∈S

ye ≤ cS ·
h=m

∑
h=1

1/h ≤ cS · ln(n+1).

So each dual constraint is violated by at most a factor of
lnn. Hence, scaling the dual variables by 1/ lnn yields a
feasible dual solution which has objective value at least
1/ lnn times the value of the primal (feasible) solution.

PROPOSITION 2.1. The greedy algorithm computes a
set cover which has size at most lnn times the size of the
optimal set cover.

How can we modify the algorithm to obtain primal
and dual solutions which are at most (1+α) away from
each other? The crucial idea is not to select a set S
’entirely’, i.e. setting xS = 1, but just adding some small
value ε to xS, thereby obtaining a greedy algorithm with
finer granularity. The choice of ε will depend on the
quality of the approximation we wish to achieve.

So again, in each round we ’pick’ the set S which
minimizes the cost-to-requirement ratio

ρS = cS/ ∑
e∈S

re

and update the primal variables

xS = xS + ε,

as well as the dual variables

ye = ye +ρS · re · ε/(1+ ε), e ∈ S.

Furthermore we decrease the requirements

re = re/(1+ ε), e ∈ S.

Notice here that the decrease ∆re of the requirement of
e ∈ S is not ε, as in the simple greedy algorithm for set
covering. Instead, the decrease is ∆re = re · ε/(1 + ε).
The dual variable ye is basically increased according to
e’s share of the cost cS due to its requirement. If at some
point the requirement re falls below some threshold δ
(which we chose later on), we set it to zero. This
updating rule allows thus some sets S to ’overpack’.

LEMMA 2.1. At any time throughout the algorithm
∑S∈S cSxS = (1+ ε)∑e∈U ye holds.

Proof. In each round, if the primal objective function
is increased by cS · ε, the dual objective function value
is increased by ∑e∈S ρS · re · ε/(1 + ε) and since ρS =
cS/(∑e∈S re), the dual increase is cS · ε/(1+ ε).

When the algorithm terminates, we have for each
e ∈U , ∑S :e∈S xS ≥ ε · k, where k is the smallest number
such that (1 + ε)−k ≤ δ. We will choose δ, such that
ε ·k ≥ 1, which implies that the primal solution is always
feasible and scaling by 1/(ε ·k) keeps primal feasibility.

Let us now argue how far the dual solution is from
feasibility.

LEMMA 2.2. For any set S ∈ S , we have ∑e∈S ye ≤
cS ln((1+ ε) ·n/δ).

Proof. Consider the sum of the requirements ∑e∈S re of
S. This quantity is |S| at the beginning and at least δ
in the ’last’ round where some element of S is covered.

Consider a round where some set S′ has minimum ratio
ρS′ and where the requirements of S are changed, i.e.,
there exists an element e ∈ S∩S′ with re > 0.

If the sum of the requirements is decreased by
some amount β = ∑e∈S∩S′ re · (ε/(1 + ε)), then ∑e∈S ye

increases by at most ρS′ ·β ≤ ρS ·β.
Now consider the ratio ρS = cS/∑e∈S re as a func-

tion of the requirement ∑e∈S re of the elements in S;
it is easy to see that the sum of all increments of
∑e∈S ye is bounded by the area under the curve cS/x
for δ/(1 + ε) ≤ x ≤ |S| which is cS · ln((1 + ε)|S|/δ) ≤
cS ln((1 + ε)n/δ). Hence scaling the dual variables by
1/ ln((1+ ε)n/δ) yields a dual feasible solution.

The ratio between the scaled primal and dual so-
lutions is now equal to (1 + ε) ln((1 + ε)n/δ)/εk which
is bounded by (1+ ε) ln((1+ ε)n/δ)/ε log1+ε δ−1. Now
we need to choose our constants so that the above quan-
tity is no more than (1+α). Setting δ = ((1+ ε)n)−1/ε

and substituting this in the above expressions gives

(1+ ε) ln((1+ ε)n)1+1/ε))

ε log1+ε((1+ ε)n)1/ε

=
(1+ ε)(1+1/ε) ln(1+ ε)n)

log1+ε(1+ ε)n

= (1+ ε) · (1+ ε) · log(1+ ε)
ε

≤ (1+ ε)2

So to obtain a ratio of (1 + α), we have to set ε =
2√1+α−1.

THEOREM 2.1. Given a fractional set cover problem,
one can compute primal and dual feasible solutions x
and y to the covering linear program and its dual pack-
ing linear program respectively such that cT x/1T y ≤
(1 + α) with O(P(n) · n · logn/α2) operations, where
P(n) denotes the time to determine the set with mini-
mum cost-to-requirement ratio minS∈S ρS.

Proof. Each e ∈ U needs k = log1+ε δ−1 rounds until
its requirement drops below δ. So in the worst case
we need n · log1+ε δ−1 rounds, which for our choice of
δ = n−

1
ε becomes n lnn/(ε · ln(1 + ε)). As for small

ε we have ln(1 + ε) ≥ ε/2, we obtain O(n · logn/ε2)
rounds overall or O(n · logn/α2) as for small α, we have
2√1+α− 1 > α/4. Thus in the real RAM model, the

actual running time is O(P(n) ·n · logn/α2) where P(n)
denotes the time to determine the variable xi to increase
in each round.

3 Computing the size of a maximum independent
set of a t-perfect graph

In the following we will use the approximation algo-
rithm from the previous section to derive a combina-
torial algorithm for exactly solving the linear program-
ming relaxation of the independent set problem on t-
perfect graphs.

Given a graph G =(V,E) with vertex set V and edge
set E, an independent or stable set is a subset I ⊆ V
such that all nodes in I are pairwise nonadjacent. The
maximum stable set problem is the problem of finding a
stable set of maximum cardinality.

Here we will apply the combinatorial approxima-
tion algorithm for the covering LP to the problem of
finding a maximum stable set in a t-perfect graph. We
believe that this outlines a general framework to obtain
combinatorial algorithms for certain packing problems
with exponentially many constraints like matching, path
matching etc.

Our goal is to solve exactly the following linear
program defined by a t-perfect graph via a combinatorial
algorithm. Let C denote the set of odd cycles (not
necessarily simple) of a graph G.

max ∑v∈V yv(3.5)
{u,v} ∈ E : yu + yv ≤ 1

C ∈ C : ∑v∈C yv ≤ b|C|/2c,
u ∈V : yu ≥ 0.

Observe that our independent set LP is in fact the
dual of the primal set cover LP where we have 2-element
sets Se for each edge and a subset Sc for each odd cycle.

The rough idea will be as follows: As we know
that ∑v∈V yv ≤ n holds for each 0-1 solution to (3.5),
we know that in particular, the optimal solution has
objective function value OPTIS ≤ n. So choosing α =
1/n, and running our (1 + α) approximation algorithm
will yield a feasible solution whose objective value is
at least OPT/(1 + α) > OPT − 1. In other words we
can determine the exact size of the maximum stable set
of graph G. We will use this as a kind of counting
oracle later on to actually construct a maximum stable
set for G. Another, more geometric view of the outcome
of the approximation algorithm is that we obtain a
point inside the stable set polytope such that all vertices
of the polytope, which have higher objective value
indeed have the optimal objective value. This geometric
interpretation can also be used to arrive at a maximum
stable set of G, i.e. an optimal vertex of the polyhedron.

3.1 Using the (1 + α) approximation algorithm for
set cover

We will apply our (1 + α) set cover approximation
algorithm to the dual set cover LP of our independent
set LP with odd cycle constraints. Again, in the dual
(the set cover LP), we have a variables xe for each edge
e ∈ E and variables xC for each odd cycle C ∈ C . The
dual linear program looks as follows:

min ∑
e∈E

xe + ∑
C∈C

xC · b|C|/2c,(3.6)

v ∈V : ∑
e :v∈e

xe + ∑
v∈C

xC ≥ 1,

e ∈ E : xe ≥ 0,

C ∈ C : xC ≥ 0.

Observe that there might be an exponential number
of variables xC in this linear program. But recall that the
(1 + α) approximation algorithm only has to determine
in each round, which variable to increase by ε, and using
the notation from Section 2 this was the set S ∈ S with
minimum cost-to-requirement ratio ρS.

The minimum ratio ρe, e ∈ E is easily determined
for the variables xe, but not as trivially determined for
the xC as there might be exponentially many of them.

We will now describe how to find the minimum
ratio minC∈C ρC, where

ρC = b|C|/2c/ ∑
v∈C

rv,

and rv ∈ [0,1] denotes the requirement of a vertex v ∈V .
As we only have to consider odd cycles up to a length
n, we can assume, |C| is known and try all possible
odd lengths |C| ≤ n. So given |C| we want to find a
(possible non-simple) odd cycle C′ such that |C| = |C′|
and ∑v∈C′ rv is maximized.

This odd cycle C′ can be easily computed by
the following idea. We construct |C| + 1 copies
V 1,V 2, . . . ,V |C|+1 of the vertex set V . Denote the i-
th copy of a vertex v by v(i). For each original undi-
rected edge {v,w} ∈ E, we draw a directed edge e =
(v(i),w(i+1)) for i = 1, . . . , |C| in this layered graph. The
weight of such an edge will be w(e) = 1− rw ≥ 0. This
defines an acyclic graph G∗ which has (|C|+ 1) · |V |
nodes and |C| · |E| edges.

Then we compute for every node v ∈V the shortest
path from its representative in V 1 to its representative in
V |C|+1. Clearly, this path has odd length and represents
a (possibly non-simple) odd cycle in the original graph.
On the other hand, each odd (possibly non-simple) cycle
W in the original graph of length |C| is represented as a
path from v(1) to v(|C|+1), where v is a member of W .
The length of this path in the layered graph is equal to
|C|−∑v∈W rv. So the shortest such path is the one which
maximizes ∑v∈W rv which is exactly what we need.

PROPOSITION 3.1. Given an undirected graph G =
(V,E) and node weights rv ∈ [0,1] for v ∈ V , one can
compute the minimum cost-to-requirement ratio ρC =
b|C|/2c/∑v∈C rv in time O(V 2 ·E).

Proof. It suffices to solve the single source shortest path
problem in the layered graph with |V |+1 layers for each
source node v in V 1 in time O(V ·E) each. The length of
all odd cycles involving v can be read off the respective

representatives of v in the odd layers of the constructed
graph in O(V) time, which implies the assertion.

LEMMA 3.1. The size of a maximum stable set of a
t-perfect graph can be computed in O(V 5 · E · logV)
arithmetic operations on numbers of length at most
O((n logn)2) bits.

Proof. >From the preceding discussion it flows that a
1 + 1/n approximation to the covering program (3.6)
yields the size of the largest stable set in a t-perfect
graph G. Combining Proposition 3.1 and Theorem 2.1
and choosing α = 1/n yields a bound of O(V 5 ·E · logV)
arithmetic operations.

A bound on the size of the numbers involved can be
obtained by noting that the requirements on the vertices
are of the form (1+ε)i/(1+ε)k where 0≤ i≤ k and k =
O(ε−2 logn). Since, ε = O(n−1) the requirements on
the vertices can be represented using only O(k logn) =
O((n logn)2) bits.

4 Constructing a maximum stable set

In this section we will show how to use our (1 + α)
approximation algorithm derived as a counting oracle
to actually construct a maximum independent set of a
graph G. For our algorithm we use the fact that t-
perfectness is a hereditary property. This result is folk-
lore but we provide a proof for the sake of completeness.

LEMMA 4.1. Let G = (V,E) be a t-perfect graph and
u ∈ V be a vertex of G. Then the graph Gu obtained by
removing u from G is t-perfect.

Proof. We have to show that the odd cycle polytope
Podd(Gu) of Gu is integral. To see this, it is enough
to show that Podd(Gu) is the projection of the face
F = Podd(G) ∩ {x ∈ Rn | xu = 0} onto the variables
xv, v ∈ V − {u}. We write a point x of F in the
form (0,xV−{u}), where xV−{u} are the components of
x indexed by V −{u}. Notice that a point x of the form
(0,xV−{u}), where xV−{u} ∈ Podd(Gu) cannot violate an
odd cycle of G which uses the vertex u. From this it
follows that F ⊇ {x ∈ Rn | x = (0,xV−{u}), xV−{u} ∈
Podd(Gu)}. Since an odd cycle of Gu is also an odd
cycle of G, we conclude also that F ⊆ {x ∈ Rn | x =
(0,xV−{u}), xV−{u} ∈ Podd(Gu)}. From this we conclude
the lemma, since the face of an integral polyhedron is
again an integral polyhedron.

The construction of a maximum stable set of a t-
perfect graph G now works as follows. We iteratively
construct independent sets S0 ⊆ S1, . . . ,⊆ Sk of G and
graphs G0, . . . ,Gk such that Sk is a maximum indepen-
dent set of G and Gi+1 results from Gi via the deletion
of one or several nodes. We initialize S with the empty
set and maintain the following invariant:

There exists a maximum independent set of
G which is the union of Si and a maximum
independent set of Gi.

We begin with S0 = /0 and G0 = G. In step i, compute
a (1 + 1/n) approximation of the linear program (3.6)
defined by Gi. This procedure gives us the size ki of
a maximum stable set of Gi. Now we check whether
a particular vertex u ∈ Vi is a member of all maximum
stable sets of Gi by removing the vertex from Gi. The
resulting graph Gi,u is still t-perfect. We again run
the (1 + 1/n)-approximation algorithm on the linear
program (3.6) defined by Gi,u. If the size of a maximum
independent set of Gi,u is less than ki, then u has to be in
each maximum stable set of Gi. In this case we update
S = S + u and continue with the graph Gi+1, which
results from Gi via removing u and all the neighbors
of u. If the size of a maximum independent set of Gi,u

is k, then we continue the procedure with Gi+1 = Gi,u.
Clearly, the procedure terminates after n rounds with the
correct result.

Using Lemma 3.1 we obtain the following running
time for our procedure.

THEOREM 4.1. There exists a combinatorial algorithm
which computes a maximum stable set of a t-perfect
graph in time O(V 6 ·E · logV).

Final remarks

We presented a combinatorial algorithm for the max-
imum stable set problem for t-perfect graphs, which
does not make use of an explicit linear programming
algorithm or geometrical tools such as the ellipsoid
method. The crux of the algorithm is to make use
of a general (1 + α)-approximation scheme for pack-
ing/covering problems which we presented in Sections 2
and 3. Making use of the structure of the stable set poly-
tope, we employ this approximation scheme in Section
4 as a counting oracle to actually construct a maximum
independent set of a t-perfect graph.

The problem of moving from an approximate
frational stable set solution to an integral solution of at
least the same quality can be phrased as the problem of
moving from a (possibly interior) point of a polytope
to a vertex solution with an at least as large objective
function value. This can be done by purely geometric
means.

However we were aiming for a purely combinato-
rial algorithm and hence have not elaborated on this ap-
proach.

References

[1] M. Boulala and J.-P. Uhry. Polytope des indépen-
dants d’un graphe série-parallèle. Discrete Mathemat-
ics, 27(3):225–243, 1979.

[2] V. Chvátal. On certain polytopes associated with graphs.
Journal of Combinatorial Theory Ser. B, 18:138–154,
1975.

[3] V. Chvátal. A greedy heuristic for the set-covering prob-
lem. Mathematics of Operations Research, 4(3):233–
235, 1979.

[4] J. Fonlupt and J.-P. Uhry. Transformations which pre-
serve perfectness and H-perfectness of graphs. In Bonn
Workshop on Combinatorial Optimization (Bonn, 1980),
pages 83–95. North-Holland, Amsterdam, 1982.

[5] M. R. Garey and D. S. Johnson. Computers and In-
tractability. A Guide to the Theory of NP-Completeness.
Freemann, 1979.

[6] A. M. H. Gerards and A. Schrijver. Matrices with
the Edmonds-Johnson property. Combinatorica, 6:365–
379, 1986.

[7] A. M. H. Gerards and F. B. Shepherd. The graphs
with all subgraphs t-perfect. SIAM Journal on Discrete
Mathematics, 11(4):524–545 (electronic), 1998.

[8] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid
method and its consequences in combinatorial optimiza-
tion. Combinatorica, 1(2):169–197, 1981.

[9] R. M. Karp and C. H. Papadimitriou. On linear char-
acterizations of combinatorial optimization problems.
SIAM Journal on Computing, 11(4):620–632, 1982.

[10] L.G. Khachiyan. A polynomial algorithm in linear pro-
gramming. Doklady Akademii Nauk SSSR, 244:1093–
1097, 1979.

[11] M. W. Padberg and M. R. Rao. The russian method for
linear programming III: Bounded integer programming.
Technical Report 81-39, New York University, Graduate
School of Business and Administration, 1981.

[12] Serge A. Plotkin, David B. Shmoys, and Éva Tardos.
Fast approximation algorithms for fractional packing
and covering problems. Math. Oper. Res., 20(2):257–
301, 1995.

[13] Iwata S., Fleischer L., and Fujishige S. A combinatorial,
strongly polynomial-time algorithm for minimizing sub-
modular functions. In ACM, editor, Proceedings of the
32nd annual ACM Symposium on Theory of Computing,
pages 97–106, New York, NY, USA, 2000. ACM Press.

[14] A. Schrijver. A combinatorial algorithm minimiz-
ing submodular functions in strongly polynomial time.
Journal of Combinatorial Theory. Series B, 80(2):346–
355, 2000.

[15] B. Spille and R. Weismantel. A generalization of ed-
monds’ matching and matroid intersection algorithms.
In Proceedings of the Ninth International Conference on
Integer Programming and Combinatorial Optimization,
volume 2337, pages 9–20. Springer, 2002.

[16] V. V. Vazirani. Approximation algorithms. Springer-
Verlag, Berlin, 2001.

[17] N. E. Young. Randomized rounding without solving
the linear program. In Proceedings of the 6th Annual
Symposium on Discrete Algorithms, pages 170–178.
ACM Press, 1995.

[18] N. E. Young. Sequential and parallel algorithms for
mixed packing and covering. In Proceedings of the 42nd
Annual IEEE Symposium on Foundations of Computer
Science, pages 538–546, 2001.

