Point Containment in the Integer Hull of a Polyhedron!
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Abstract

We show that the point containment problem in the
integer hull of a polyhedron, which is defined by m
inequalities, with coefficients of at most ¢ bits can be
solved in time O(m + ¢) in the two-dimensional case
and in expected time O(m + ¢?logm) in any fixed
dimension. This improves on the algorithm which is
based on the equivalence of separation and optimization
in the general case and on a direct algorithm (SODA 97)
for the two-dimensional case.

1 Introduction

We are interested in the point containment problem in
integer hulls of polyhedra: Given a point z* € Q7 and a
set of rational constraints Az < b, A € Q™*¢ b e Q™,
determine whether z* belongs to the convex hull of
the integral points satisfying the constraints. Moreover,
certify your answer by providing a simplex containing
z* which is spanned by feasible integer points in the
“yes” case, or by providing a halfspace h containing z*
such that AN P is integer infeasible in the “no” case. We
use P = {x € R? | Az < b} to denote the polyhedron
defined by our set of constraints and P; to denote the
convex hull of the integral points in P; Py is frequently
called the integer hull of P.

Let m be the number of constraints, d the dimension
of ambient space, and assume that each constraint and
x* has binary encoding length O(y). We show:

THEOREM 1.1. For d = 2, the point containment prob-
lem in integer hulls of polygons can be solved in time
O(m+¢). Ford > 3 and d fized, the point containment
problem in integer hulls of polyhedra can be solved in
expected time O(m + ©*logm).

We will make frequent use of the fact that integer
programming can be done in expected time O(m +
wlogm) in any fixed dimension [3] and in time O(m+)
in the two-dimensional case [4]. Also the integer hull of
a polygon (vertices in clockwise order) can be computed
in time O(m ¢) in two dimensions [6], in particular the
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number of vertices of the integer hull is O(m ¢). We also
assume without loss of generality [11] that P is bounded
and that Py is full-dimensional.

2 Related work

In two dimensions (d = 2), McCormick, Smallwood and
Spieksma [9, 8] developed an algorithm, which runs in
time O(m p+?). Using the equivalence of optimization
and separation [5] together with recent algorithms for
integer programming [3, 4] one can solve the point
containment problem with the ellipsoid method. This
yields an expected running time of O(m ¢ + ¢?logm)
for d > 3 and a running time of O(m ¢ + ?) for d = 2.
These algorithms are certifying in our sense.

McCormick et al. [9, 8] reduce a multiprocessor
machine scheduling problem to the two-dimensional
point-containment problem, where containment has to
be certified with a unimodular triangle, i.e., with a
triangle that does not contain any integer points besides
its vertices. Given any feasible integer triangle 7" which
contains x*, one can construct a unimodular triangle 77,
which contains z* as follows.

Compute the integer hulls L and R of the two
polygons TN (x(1) < |2*(1)]) and TN (x(1) > [2*(1)]).
The closure of the set T'\ (L U R) is a (not necessarily
convex) polygon B which contains z*. This polygon can
be computed in time O(p) and has O(y) vertices. Now
triangulate B and determine the triangle 77 containing
x*. This costs again O(y) [1]. The interior of 7" does
not contain an integer point and only one edge e of T”,
the edge stemming from an edge of B, might contain
other integer points. Consider the intersection y* of
the ray m , where v is the opposite vertex of e, with
this edge e. The two nearest integer points of y* on e,
together with v form a certifying unimodular triangle.
These two nearest points can be found by solving a
one-dimensional integer program, or directly, with one
extended gcd-computation.

3 An algorithm for d =2

For a given point z* € Q2, the following simple
algorithm solves the point containment problem in the
integer hull of a polyhedron P C Q? in time O(m + ¢),
see Figure 1.



Figure 1: The case d = 2.

1. Find an integer point v € P. If * € Py, then x* is
contained in an integral triangle with vertex u.

2. Determine the constraint a”z < 3, which defines
—_—
the facet of P which is hit by the ray u,z* (ties are
broken arbitrarily).

3. Find the optimal integer point v in P w.r.t. to the
objective function maxa”xz; let 3* be the optimal
objective function value.

4. Let w be the intersection of the line o’z = #*
with m If aT2* > B*, then x* is not contained
in P; and we have found a certifying hyperplane,
otherwise consider the triangle A = conv(z*, v, w)
and compute its integer hull A;. Note that A is
contained in P.

5. Compute the line [ which intersects x* and is
tangential to Ay such that u and Ay lie on the same
side of . Let y be the first vertex of A; which lies
on [, starting from x*.

6. Perform an integer feasibility test for P intersected
with the halfspace h defined by the closure of the
side of [ which does not contain A;. Any integer
point z in the resulting polygon must be opposite of
y on the line through v and x*. Thus conv(u, y, z)
is a certifying triangle. If no integer point exists
in this polygon, then x* is not contained in Pr. A
certifying hyperplane can then be determined by
slightly rotating the line [ around y. This rotation
can be determined by similar means with which we
determined y in Step 5.

For the running time, observe that we have to solve
a constant number of optimization problems (O(m+¢))

and perform one integer hull computation for a constant
number of constraints (O(y)); finding the tangent line
can also be done in O(p) as A1 has O(yp) vertices. This
yields a final running time of O(m + ¢).

4 Point containment in
dimension

arbitrary fixed

Let us now consider the case d > 3. We assume that
the integer hull of the polyhedron P is not empty, which
can be tested with a call to an optimization oracle.
Further we assume without loss of generality that P
is bounded and that implicit upper and lower bounds
on the variables are part of the constraint set Az < b.
Recall that an inequality a2 < 3 is called valid for P,
if all points of P satisfy it. A subset of points F C P,
which satisfy a valid inequality a”z < 3 of P with
equality is called a face of P. The inequality o’z < 3
is then called the face-defining inequality of F'.

Given a polytope P, the following procedure com-
putes a simplex 3 with vertices in Py and z* € ¥ if and
only if z* € Py.

ContainingSimplex (P, x*)

1. Compute the lexicographically smallest integer
point u of Pj.

2. Determine the last point in P; on the ray m and
denote it by w. Furthermore, determine a face-
defining inequality a”z < § of the minimal face of
P; containing w. If w = x* or if u = w, then return
the simplex ¥ = {u}.

3. Otherwise, recursively determine the simplex X'
containing w in the integer hull of P’ = PN (a’x =
() and return the simplex spanned by u and ¥'.

The so constructed simplex is unique and denoted by
S(x*, P).

Before we begin with an analysis of this approach,
let us define the height v(z*, P) of x* and P, which
is a tuple. If the simplex X (z*, P) consists of u alone,
then v(z*, P) = (u). Otherwise, let h be the distance
from u to w. The height is then recursively defined as
the tuple v(z*, P) = (u, —h, v(w, PN(a’x = 3)). In the
following, we assume that the height v(x*, P) is a 2d+1-
tuple by appending co-components to right of the tuple
defined above. Given x*, we define an order P <.« @ if
v(z*, P) <iex v(x*, Q) for polytopes P,Q C R%. Notice
that v(z*, P) = v(z*,Q) if and only if the simplices
Y(z*, P) and X(2*, Q) are equal. Furthermore we have
the following lemma.

LEMMA 4.1. Let P C R? and Q C R? be polytopes and
v € RL If P C Q, then v(z*,Q) <iex v(z*,P) and



thus Q =4+ P. Moreover, v(z*,Q) <iex v(z*,P) iff a
vertex of ¥(z*, Q) is not contained in P.

Proof. Let £p = X(z*, P) and Yo = X(z*, Q).

Let up and ug, denote the lexicographically small-
est integer point of P and () respectively. Since
up € @ we have ug <jex up. If they differ, we have
v(z*, Q) <iex v(z*, P) and a vertex of ¥g is not con-
tained in P. We now assume that up = ug and de-
note this point by w. If u = 2%, ¥g = ¥p = {u}
and v(z*, P) = (u,00,...,00) = v(z*,Q). So assume
u # z* and let wp and wg be the last vertices in the
boundary of P; and @), respectively, on the ray m
and let F'p and Fg be the minimal faces containing these
points, respectively. Since Pr C Qj, wg does not pre-
cede wp on m If wg =u, X9 = Xp = {u} and
v(z*, P) = (u,00,...,00) = v(z*,Q). So assume wg #
u. If wp # wg, wo ¢ Pr and v(z*, Q) <iex v(z*, P).
Also, wg € Fg and hence is contained in the simplex
¥, where X, is the simplex determined in step 3 of
ContainingSimplex(Q, z*). Since wg ¢ Pr, one of
the vertices of Z’Q is not contained in Pr.

We now assume wp = wg and wg # v and use w to
denote wg. Let agx < Bg be a face-defining inequality
Fg. Remember that v(z*,Q) = (u, —h,v(w, Fg)) and
that v(z*, P) = (u, —h,v(w, Fp)). The assertion then
follows by induction if one can show that Fp C Fp
holds.

Since Py C @Q the inequality agx < Bg is face-
defining for P;. The face Fp of Pr, defined by this
inequality contains w and thus Fp, by the minimality
of Fp. The integer points in Fp lie in P; and hence
in Q; and they satisfy agx < Bg with equality. Thus
FpCFpCFg. 1

4.1 Details of Step 2 We now analyze the running
time of the above procedure. We assume that P is
represented by a system Az < b, where A € Q™*"™ and
b € Q™. Again, ¢ denotes the largest binary encoding
length of a coefficient of A,b and x*.

Step 1 of the above procedure takes an expected
number of O(m + ¢ logm) steps, whereas step 2 can be
solved in expected time O(mep + ¢*logm) as follows:

Let (z;)ier be the set of vertices of P;. The
intersection point w of the ray starting at u through =*
with the boundary of Py is the last point of the ray that
is a convex combination of points in (x;);c;. Thus the
following linear program finds the intersection point w.

max «
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The dual of this linear program has the following
form:

min yTu+z
st. yT(a*—u) = 1
—yTw;+2 > 0

It has d + 1 variables. The separation problem
for the dual is an optimization over the integer hull of
P (For an alleged solution (57, z) compute max; §% x;
and check the inequality. The d equalities can be
checked easily). Thus the separation problem can be
solved in time O(m + plogm) and hence the linear
program can be solved via the ellipsoid method [5] in
time O(m ¢ + ¢*logm).

It remains to show, how to compute the face-
defining inequality a’z < B of the minimal face of
P containing w. This is done as follows, see also [5,
p. 183, theorem 6.5.8]. We look for a valid inequality
that is tight at w with smallest possible dimension,
i.e. the number of affinely independent points of P
that are tight at w should be as small as possible. Let
Q be the polytope Q@ = {(zT, )T € RI*! | Tz <
pfor all x € Pr, 2w = p}, which is the polytope of
valid inequalities for P; which are tight at w. A point in
the relative interior of this set defines a face of minimal
dimension that is tight at w. The separation problem
for this polytope is again an optimization problem over
the integer hull of P. Thus the optimization problem
over @ can be solved in time O(m ¢+ p? logm). Within
this time-bound one can find a point (a”,3)” in the
relative interior of Q. The inequality a”z < 8 is the
face-defining inequality we are looking for.

Therefore the overall running time of this procedure
on a polytope defined by m constraints in d dimensions
is O(my + ¢?logm) for fixed d. So the running time is
dominated by Step 2.

4.2 The size of a basis In the following we apply
the machinery of LP-type problems such that this step
has to be performed O(logm) times on subproblems
of constant size. A smallest (number of constraints)
subsystem A’z < b of Az < b with Z(a*, Az < b) =
Y(z*, Az <V) is called a basis of Ax < b. The goal of
this section is to show, that the number of constraints
of a basis of Ax < b is bounded by a constant. The
following theorem is due to Scarf [10], see also [11,
p. 234].

THEOREM 4.1. Let Ax < b be a system of inequalities
in d variables, and let ¢ € R?. If max{cTz | Az <
b, x € Z%} is finite, then there exists a subset A'x <V
of Az < b with at most 2% — 1 inequalities, such that the



following equality holds

max{cTz | Az <b, 2 € 2}
=max{cTz | Az <V, x €2

From this one can immediately infer the next state-
ment, which is useful in our setting.

COROLLARY 4.1. Let P = {x € R? | Az < b} be a
rational polyhedron and let Fp C P; be a face of Pr.
Then there exists a subsystem A'x < V' of Ax < b, which
consists of at most 2d (29 — 1) constraints, defining a
polyhedron Q = {x € R? | A’x < b}, such that there
exists a face Fo of Qr with Fp C Fg and dim(Fp) =
dim(Fg). Furthermore, an inequality a™x < 3 is a face-
defining inequality of Fp if and only if aTx < B is a
face-defining inequality of Fg.

Proof. The polyhedron P; can be described as
Pr={zeR | A2 =0"}n{z cRY| A2 <"},

such that the following conditions hold, see [11, p. 103]:
The matrix A= has full row-rank and d; rows, where
d — dy is the dimension of P;. Furthermore each
constraint of Atz < bt is irredundant and each row
of AT is orthogonal to the rows of A~.

A face Fp of P; of dimension k¥ < d — d; is
determined by d—d; —k linearly independent constraints
Ax < b from the set ATx < bt which are satisfied
by Fp with equality. It follows from Theorem 2 that
there exists a subset A’z < b of Az < b with at most
2d (2% — 1) constraints, defining a polyhedron @, such
that A=z = b= and Az < b are valid for Q, where
Q = {xr € RY | A’z < ¥'}. The face Fy of Q; which
results from setting the constraints in Az < bto equality
contains F'p and has dimension k.

Furthermore, an inequality a”’z < 3 is a face-
defining inequality of Fp or of Fy if and only if a =
A= + AA and 8 = ub+)\5, where p € R4, X\ €
RA=d1=k and X is strictly positive. I

This enables us to estimate the size of a basis of
Az <b.

LEMMA 4.2. Let P = {x € RY | Az < b} be a
polytope in fized dimension d with nmonempty integer
hull. Suppose that ¥(x*, Az < b) has k vertices. Then
there exists a subset A'x <V of the constraints Az < b,
with at most (2k —1)2d (2% — 1) constraints, such that
the simplices X(x*, Ax < b) and XZ(x*, A’z < V') are
equal.

Proof. We use induction on the number k. It follows
from Corollary 1 that 2d (2¢ — 1) constraints suffice to

fix the lexicographically minimal vertex u of P; and
to detect the case, where w = u. Thus if £ = 1 the
assertion holds.

Suppose now that k > 2. Again, by Corollary 1,
there exists a subset A’z <V’ defining a polyhedron Q,
such that the ray m leaves Q7 also in the point w
and such that a2 < B defines the minimal face of P;
containing w if and only if a2 < 3 defines the minimal
face of Q)1 containing w.

This means that there exists a subset of 4d (2¢ — 1)
constraints with respect to which the first two steps
of the procedure ContainingSimplex yields the same
result. The assertion then follows by induction. 1

4.3 The LP-type problem We now model the
search for a constant size subset A’z < b’ of Az < b,
such that X(z*, Ax < b) = X(z*, A’z < V') as an LP-
type problem. Such an LP-type problem [7] is specified
by a pair (H,w), where H is a finite set, whose elements
are called constraints and w : 27 +— W is a function
with values in a linearly ordered set (W, <) satisfying
a certain set of axioms (see below). The goal is to
compute a minimal subset By of H with the same value
as H. In our setting the set H consists of the constraints
defining P. For a subset FF C H, we denote by P(F)
the polytope which is defined by F' and the implicit
upper and lower bounds. We then define w(F) < w(G)
if P(F) <.+ P(H). The following axioms are satisfied.
Axiom 1.(Monotonicity) For any F,G with FF C G C
H, we have w(F) < w(G).

This axiom is immediate by Lemma 1, since P(G) C
P(F).

Axiom 2. (Locality) For any F' C G C H with w(F) =
w(G) and any h € H, w(G) < w(G U {h}) implies that
also w(F) < w(F U {h}).

If w(F) = w(G) holds, then the simplices
Y(z*, P(F)) and X(z*, P(G)) coincide. If w(G) <
w(G U {h}), then h cuts off a vertex of this simplex
(Lemma 1). Consequently also w(F') strictly increases.

A basis Bg of a subset G C H is a minimal subset of
G with w(Bg) = w(G). The combinatorial dimension
of a LP-type problem is the size of the largest basis
of any G C H. From Lemma 2, we know that the
combinatorial dimension of our problem is constant.

An LP-type problem of constant combinatorial di-
mension can be solved with O(m) wviolation tests and
O(logm) basis computations for constant size subsets
of constraints, as shown in [2, 7]. A violation test for a
basis B and a constraint & is the problem of determining
whether w(B) # w(B U {h}). A basis computation for
a set of constraints G is the task of computing a basis
of G.

Let us first deal with the violation test. Let B



be a basis. A constraint violates this basis, if and
only if it cuts off (at least) one of the corner points
of ¥(z*, P(B)). Thus, we iterate over the corners of
the simplex and check violation. This requires constant
time.

For the basis computation, let G C H be a sub-
set of the constraints of constant size. We have to
compute the simplex X(z*, P(F)) for each F C G
and choose the smallest set F' with X(z*, P(F)) =
Y(z*, P(G)). This can be done by calling our proce-
dure ContainingSimplex(G, z*) a constant number
of times. These calls cost O(p?).

This shows that one can compute X(z*, Az < b)
and a basis A’z < b of Ar < b in expected time
O(m + ¢?logm). Recall that z* € P; if and only if
x* € X(z*, Az < b) if and only if z* is in the integer
hull of A’z < ¥'. If 2* is not in X(a*, Az < b) we can
compute a separating hyperplane of x* from the integer
hull of A’z < b in O(p?) steps, using the equivalence of
separation and optimization.

All-together we have shown that the point contain-
ment problem in the integer hull of a polyhedron can
be solved in an expected number of O(m + ¢?logm)
operations. This concludes the proof of Theorem 1.
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