
Point Containment in the Integer Hull of a Polyhedron1

Ernst Althaus2 Friedrich Eisenbrand2 Stefan Funke2 Kurt Mehlhorn2

Abstract

We show that the point containment problem in the
integer hull of a polyhedron, which is defined by m

inequalities, with coefficients of at most ϕ bits can be
solved in time O(m + ϕ) in the two-dimensional case
and in expected time O(m + ϕ2 logm) in any fixed
dimension. This improves on the algorithm which is
based on the equivalence of separation and optimization
in the general case and on a direct algorithm (SODA 97)
for the two-dimensional case.

1 Introduction

We are interested in the point containment problem in
integer hulls of polyhedra: Given a point x∗ ∈ Qd and a
set of rational constraints Ax ≤ b, A ∈ Qm×d, b ∈ Qm,
determine whether x∗ belongs to the convex hull of
the integral points satisfying the constraints. Moreover,
certify your answer by providing a simplex containing
x∗ which is spanned by feasible integer points in the
“yes” case, or by providing a halfspace h containing x∗

such that h∩P is integer infeasible in the “no” case. We
use P = {x ∈ Rd | Ax ≤ b} to denote the polyhedron
defined by our set of constraints and PI to denote the
convex hull of the integral points in P ; PI is frequently
called the integer hull of P .

Letm be the number of constraints, d the dimension
of ambient space, and assume that each constraint and
x∗ has binary encoding length O(ϕ). We show:

Theorem 1.1. For d = 2, the point containment prob-
lem in integer hulls of polygons can be solved in time
O(m+ϕ). For d ≥ 3 and d fixed, the point containment
problem in integer hulls of polyhedra can be solved in
expected time O(m+ ϕ2 logm).

We will make frequent use of the fact that integer
programming can be done in expected time O(m +
ϕ logm) in any fixed dimension [3] and in time O(m+ϕ)
in the two-dimensional case [4]. Also the integer hull of
a polygon (vertices in clockwise order) can be computed
in time O(mϕ) in two dimensions [6], in particular the

1Partially supported by the IST Programme of the EU under

contract number IST-1999-14186 (ALCOM-FT)
2Max-Planck-Institute for Computer Science, Saarbrücken,

Germany

number of vertices of the integer hull is O(mϕ). We also
assume without loss of generality [11] that P is bounded
and that PI is full-dimensional.

2 Related work

In two dimensions (d = 2), McCormick, Smallwood and
Spieksma [9, 8] developed an algorithm, which runs in
time O(mϕ+ϕ2). Using the equivalence of optimization
and separation [5] together with recent algorithms for
integer programming [3, 4] one can solve the point
containment problem with the ellipsoid method. This
yields an expected running time of O(mϕ + ϕ2 logm)
for d ≥ 3 and a running time of O(mϕ+ ϕ2) for d = 2.
These algorithms are certifying in our sense.

McCormick et al. [9, 8] reduce a multiprocessor
machine scheduling problem to the two-dimensional
point-containment problem, where containment has to
be certified with a unimodular triangle, i.e., with a
triangle that does not contain any integer points besides
its vertices. Given any feasible integer triangle T which
contains x∗, one can construct a unimodular triangle Tu

which contains x∗ as follows.
Compute the integer hulls L and R of the two

polygons T ∩(x(1) ≤ bx∗(1)c) and T ∩(x(1) ≥ dx∗(1)e).
The closure of the set T \ (L ∪ R) is a (not necessarily
convex) polygon B which contains x∗. This polygon can
be computed in time O(ϕ) and has O(ϕ) vertices. Now
triangulate B and determine the triangle T ′ containing
x∗. This costs again O(ϕ) [1]. The interior of T ′ does
not contain an integer point and only one edge e of T ′,
the edge stemming from an edge of B, might contain
other integer points. Consider the intersection y∗ of

the ray
−−→
v, x∗, where v is the opposite vertex of e, with

this edge e. The two nearest integer points of y∗ on e,
together with v form a certifying unimodular triangle.
These two nearest points can be found by solving a
one-dimensional integer program, or directly, with one
extended gcd-computation.

3 An algorithm for d = 2

For a given point x∗ ∈ Q2, the following simple
algorithm solves the point containment problem in the
integer hull of a polyhedron P ⊆ Q2 in time O(m+ ϕ),
see Figure 1.

PSfrag replacements

u

v

w

x∗

l

∆Iy

z

Figure 1: The case d = 2.

1. Find an integer point u ∈ P . If x∗ ∈ PI , then x∗ is
contained in an integral triangle with vertex u.

2. Determine the constraint aTx ≤ β, which defines

the facet of P which is hit by the ray
−−→
u, x∗ (ties are

broken arbitrarily).

3. Find the optimal integer point v in P w.r.t. to the
objective function max aTx; let β∗ be the optimal
objective function value.

4. Let w be the intersection of the line aTx = β∗

with
−−→
u, x∗. If aTx∗ > β∗, then x∗ is not contained

in PI and we have found a certifying hyperplane,
otherwise consider the triangle ∆ = conv(x∗, v, w)
and compute its integer hull ∆I . Note that ∆ is
contained in P .

5. Compute the line l which intersects x∗ and is
tangential to ∆I such that u and ∆I lie on the same
side of l. Let y be the first vertex of ∆I which lies
on l, starting from x∗.

6. Perform an integer feasibility test for P intersected
with the halfspace h defined by the closure of the
side of l which does not contain ∆I . Any integer
point z in the resulting polygon must be opposite of
y on the line through u and x∗. Thus conv(u, y, z)
is a certifying triangle. If no integer point exists
in this polygon, then x∗ is not contained in PI . A
certifying hyperplane can then be determined by
slightly rotating the line l around y. This rotation
can be determined by similar means with which we
determined y in Step 5.

For the running time, observe that we have to solve
a constant number of optimization problems (O(m+ϕ))

and perform one integer hull computation for a constant
number of constraints (O(ϕ)); finding the tangent line
can also be done in O(ϕ) as ∆I has O(ϕ) vertices. This
yields a final running time of O(m+ ϕ).

4 Point containment in arbitrary fixed
dimension

Let us now consider the case d ≥ 3. We assume that
the integer hull of the polyhedron P is not empty, which
can be tested with a call to an optimization oracle.
Further we assume without loss of generality that P

is bounded and that implicit upper and lower bounds
on the variables are part of the constraint set Ax ≤ b.
Recall that an inequality aTx ≤ β is called valid for P ,
if all points of P satisfy it. A subset of points F ⊆ P ,
which satisfy a valid inequality aTx ≤ β of P with
equality is called a face of P . The inequality aTx ≤ β

is then called the face-defining inequality of F .
Given a polytope P , the following procedure com-

putes a simplex Σ with vertices in PI and x∗ ∈ Σ if and
only if x∗ ∈ PI .

ContainingSimplex(P , x∗)

1. Compute the lexicographically smallest integer
point u of PI .

2. Determine the last point in PI on the ray
−−→
u, x∗ and

denote it by w. Furthermore, determine a face-
defining inequality aTx ≤ β of the minimal face of
PI containing w. If u = x∗ or if u = w, then return
the simplex Σ = {u}.

3. Otherwise, recursively determine the simplex Σ′

containing w in the integer hull of P ′ = P ∩(aTx =
β) and return the simplex spanned by u and Σ′.

The so constructed simplex is unique and denoted by
Σ(x∗, P).

Before we begin with an analysis of this approach,
let us define the height ν(x∗, P) of x∗ and P , which
is a tuple. If the simplex Σ(x∗, P) consists of u alone,
then ν(x∗, P) = (u). Otherwise, let h be the distance
from u to w. The height is then recursively defined as
the tuple ν(x∗, P) = (u,−h, ν(w,P ∩(aTx = β)). In the
following, we assume that the height ν(x∗, P) is a 2 d+1-
tuple by appending ∞-components to right of the tuple
defined above. Given x∗, we define an order P ¹x∗ Q if
ν(x∗, P) ≤lex ν(x∗, Q) for polytopes P,Q ⊆ Rd. Notice
that ν(x∗, P) = ν(x∗, Q) if and only if the simplices
Σ(x∗, P) and Σ(x∗, Q) are equal. Furthermore we have
the following lemma.

Lemma 4.1. Let P ⊆ Rd and Q ⊆ Rd be polytopes and
x∗ ∈ Rd. If P ⊆ Q, then ν(x∗, Q) ≤lex ν(x∗, P) and

thus Q ¹x∗ P . Moreover, ν(x∗, Q) <lex ν(x∗, P) iff a
vertex of Σ(x∗, Q) is not contained in P .

Proof. Let ΣP = Σ(x∗, P) and ΣQ = Σ(x∗, Q).
Let uP and uQ, denote the lexicographically small-

est integer point of P and Q respectively. Since
uP ∈ Q we have uQ ≤lex uP . If they differ, we have
ν(x∗, Q) <lex ν(x∗, P) and a vertex of ΣQ is not con-
tained in P . We now assume that uP = uQ and de-
note this point by u. If u = x∗, ΣQ = ΣP = {u}
and ν(x∗, P) = (u,∞, . . . ,∞) = ν(x∗, Q). So assume
u 6= x∗ and let wP and wQ be the last vertices in the

boundary of PI and QI , respectively, on the ray
−−→
u, x∗

and let FP and FQ be the minimal faces containing these
points, respectively. Since PI ⊆ QI , wQ does not pre-

cede wP on
−−→
u, x∗. If wQ = u, ΣQ = ΣP = {u} and

ν(x∗, P) = (u,∞, . . . ,∞) = ν(x∗, Q). So assume wQ 6=
u. If wP 6= wQ, wQ 6∈ PI and ν(x∗, Q) <lex ν(x∗, P).
Also, wQ ∈ FQ and hence is contained in the simplex
Σ′

Q, where Σ′
Q is the simplex determined in step 3 of

ContainingSimplex(Q, x∗). Since wQ 6∈ PI , one of
the vertices of Σ′

Q is not contained in PI .
We now assume wP = wQ and wQ 6= u and use w to

denote wQ. Let a
T
Qx ≤ βQ be a face-defining inequality

FQ. Remember that ν(x∗, Q) = (u,−h, ν(w,FQ)) and
that ν(x∗, P) = (u,−h, ν(w,FP)). The assertion then
follows by induction if one can show that FP ⊆ FQ

holds.
Since PI ⊆ QI the inequality aT

Qx ≤ βQ is face-
defining for PI . The face F ′

P of PI , defined by this
inequality contains w and thus FP , by the minimality
of FP . The integer points in F ′

P lie in PI and hence
in QI and they satisfy aT

Qx ≤ βQ with equality. Thus
FP ⊆ F ′

P ⊆ FQ.

4.1 Details of Step 2 We now analyze the running
time of the above procedure. We assume that P is
represented by a system Ax ≤ b, where A ∈ Qm×n and
b ∈ Qm. Again, ϕ denotes the largest binary encoding
length of a coefficient of A, b and x∗.

Step 1 of the above procedure takes an expected
number of O(m+ϕ logm) steps, whereas step 2 can be
solved in expected time O(mϕ+ ϕ2 logm) as follows:

Let (xi)i∈I be the set of vertices of PI . The
intersection point w of the ray starting at u through x∗

with the boundary of PI is the last point of the ray that
is a convex combination of points in (xi)i∈I . Thus the
following linear program finds the intersection point w.

max α

s.t. u+ α(x∗ − u) =
∑

i∈I λixi∑
i∈I λi = 1

λ ≥ 0

The dual of this linear program has the following
form:

min yTu+ z

s.t. yT (x∗ − u) = 1
−yTxi + z ≥ 0

It has d + 1 variables. The separation problem
for the dual is an optimization over the integer hull of
P (For an alleged solution (ȳT , z̄) compute maxi ȳ

Txi

and check the inequality. The d equalities can be
checked easily). Thus the separation problem can be
solved in time O(m + ϕ logm) and hence the linear
program can be solved via the ellipsoid method [5] in
time O(mϕ+ ϕ2 logm).

It remains to show, how to compute the face-
defining inequality aTx ≤ β of the minimal face of
PI containing w. This is done as follows, see also [5,
p. 183, theorem 6.5.8]. We look for a valid inequality
that is tight at w with smallest possible dimension,
i.e. the number of affinely independent points of PI

that are tight at w should be as small as possible. Let
Q be the polytope Q = {(zT , µ)T ∈ Rd+1 | zTx ≤
µ for all x ∈ PI , z

Tw = µ}, which is the polytope of
valid inequalities for PI which are tight at w. A point in
the relative interior of this set defines a face of minimal
dimension that is tight at w. The separation problem
for this polytope is again an optimization problem over
the integer hull of P . Thus the optimization problem
over Q can be solved in time O(mϕ+ϕ2 logm). Within
this time-bound one can find a point (aT , β)T in the
relative interior of Q. The inequality aTx ≤ β is the
face-defining inequality we are looking for.

Therefore the overall running time of this procedure
on a polytope defined by m constraints in d dimensions
is O(mϕ+ ϕ2 logm) for fixed d. So the running time is
dominated by Step 2.

4.2 The size of a basis In the following we apply
the machinery of LP-type problems such that this step
has to be performed O(logm) times on subproblems
of constant size. A smallest (number of constraints)
subsystem A′x ≤ b′ of Ax ≤ b with Σ(x∗, Ax ≤ b) =
Σ(x∗, A′x ≤ b′) is called a basis of Ax ≤ b. The goal of
this section is to show, that the number of constraints
of a basis of Ax ≤ b is bounded by a constant. The
following theorem is due to Scarf [10], see also [11,
p. 234].

Theorem 4.1. Let Ax ≤ b be a system of inequalities
in d variables, and let c ∈ Rd. If max{cTx | Ax ≤
b, x ∈ Zd} is finite, then there exists a subset A′x ≤ b′

of Ax ≤ b with at most 2d−1 inequalities, such that the

following equality holds

max{cTx | Ax ≤ b, x ∈ Zd}

= max{cTx | A′x ≤ b′, x ∈ Zd}

From this one can immediately infer the next state-
ment, which is useful in our setting.

Corollary 4.1. Let P = {x ∈ Rd | Ax ≤ b} be a
rational polyhedron and let FP ⊆ PI be a face of PI .
Then there exists a subsystem A′x ≤ b′ of Ax ≤ b, which
consists of at most 2 d (2d − 1) constraints, defining a
polyhedron Q = {x ∈ Rd | A′x ≤ b′}, such that there
exists a face FQ of QI with FP ⊆ FQ and dim(FP) =
dim(FQ). Furthermore, an inequality aTx ≤ β is a face-
defining inequality of FP if and only if aTx ≤ β is a
face-defining inequality of FQ.

Proof. The polyhedron PI can be described as

PI = {x ∈ Rd | A=x = b=} ∩ {x ∈ Rd | A+x ≤ b+},

such that the following conditions hold, see [11, p. 103]:
The matrix A= has full row-rank and d1 rows, where
d − d1 is the dimension of PI . Furthermore each
constraint of A+x ≤ b+ is irredundant and each row
of A+ is orthogonal to the rows of A=.

A face FP of PI of dimension k ≤ d − d1 is
determined by d−d1−k linearly independent constraints
Ãx ≤ b̃ from the set A+x ≤ b+ which are satisfied
by FP with equality. It follows from Theorem 2 that
there exists a subset A′x ≤ b′ of Ax ≤ b with at most
2 d (2d − 1) constraints, defining a polyhedron Q, such

that A=x = b= and Ãx ≤ b̃ are valid for QI , where
Q = {x ∈ Rd | A′x ≤ b′}. The face FQ of QI which

results from setting the constraints in Ãx ≤ b̃ to equality
contains FP and has dimension k.

Furthermore, an inequality aTx ≤ β is a face-
defining inequality of FP or of FQ if and only if a =

µA= + λ Ã and β = µ b + λ b̃, where µ ∈ Rd1 , λ ∈
Rd−d1−k and λ is strictly positive.

This enables us to estimate the size of a basis of
Ax ≤ b.

Lemma 4.2. Let P = {x ∈ Rd | Ax ≤ b} be a
polytope in fixed dimension d with nonempty integer
hull. Suppose that Σ(x∗, Ax ≤ b) has k vertices. Then
there exists a subset A′x ≤ b′ of the constraints Ax ≤ b,
with at most (2k − 1) 2 d (2d − 1) constraints, such that
the simplices Σ(x∗, Ax ≤ b) and Σ(x∗, A′x ≤ b′) are
equal.

Proof. We use induction on the number k. It follows
from Corollary 1 that 2 d (2d − 1) constraints suffice to

fix the lexicographically minimal vertex u of PI and
to detect the case, where w = u. Thus if k = 1 the
assertion holds.

Suppose now that k ≥ 2. Again, by Corollary 1,
there exists a subset A′x ≤ b′ defining a polyhedron Q,

such that the ray
−−→
u, x∗ leaves QI also in the point w

and such that aTx ≤ β defines the minimal face of PI

containing w if and only if aTx ≤ β defines the minimal
face of QI containing w.

This means that there exists a subset of 4 d (2d− 1)
constraints with respect to which the first two steps
of the procedure ContainingSimplex yields the same
result. The assertion then follows by induction.

4.3 The LP-type problem We now model the
search for a constant size subset A′x ≤ b′ of Ax ≤ b,
such that Σ(x∗, Ax ≤ b) = Σ(x∗, A′x ≤ b′) as an LP-
type problem. Such an LP-type problem [7] is specified
by a pair (H,ω), where H is a finite set, whose elements
are called constraints and ω : 2H 7→ W is a function
with values in a linearly ordered set (W,≤) satisfying
a certain set of axioms (see below). The goal is to
compute a minimal subset BH of H with the same value
asH. In our setting the setH consists of the constraints
defining P . For a subset F ⊆ H, we denote by P (F)
the polytope which is defined by F and the implicit
upper and lower bounds. We then define ω(F) ≤ ω(G)
if P (F) ¹x∗ P (H). The following axioms are satisfied.
Axiom 1.(Monotonicity) For any F,G with F ⊆ G ⊆
H, we have ω(F) ≤ ω(G).

This axiom is immediate by Lemma 1, since P (G) ⊆
P (F).
Axiom 2.(Locality) For any F ⊆ G ⊆ H with ω(F) =
ω(G) and any h ∈ H, ω(G) < ω(G ∪ {h}) implies that
also ω(F) < ω(F ∪ {h}).

If ω(F) = ω(G) holds, then the simplices
Σ(x∗, P (F)) and Σ(x∗, P (G)) coincide. If ω(G) <

ω(G ∪ {h}), then h cuts off a vertex of this simplex
(Lemma 1). Consequently also ω(F) strictly increases.

A basis BG of a subset G ⊆ H is a minimal subset of
G with ω(BG) = ω(G). The combinatorial dimension
of a LP-type problem is the size of the largest basis
of any G ⊆ H. From Lemma 2, we know that the
combinatorial dimension of our problem is constant.

An LP-type problem of constant combinatorial di-
mension can be solved with O(m) violation tests and
O(logm) basis computations for constant size subsets
of constraints, as shown in [2, 7]. A violation test for a
basis B and a constraint h is the problem of determining
whether ω(B) 6= ω(B ∪ {h}). A basis computation for
a set of constraints G is the task of computing a basis
of G.

Let us first deal with the violation test. Let B

be a basis. A constraint violates this basis, if and
only if it cuts off (at least) one of the corner points
of Σ(x∗, P (B)). Thus, we iterate over the corners of
the simplex and check violation. This requires constant
time.

For the basis computation, let G ⊆ H be a sub-
set of the constraints of constant size. We have to
compute the simplex Σ(x∗, P (F)) for each F ⊆ G

and choose the smallest set F with Σ(x∗, P (F)) =
Σ(x∗, P (G)). This can be done by calling our proce-
dure ContainingSimplex(G, x∗) a constant number
of times. These calls cost O(ϕ2).

This shows that one can compute Σ(x∗, Ax ≤ b)
and a basis A′x ≤ b′ of Ax ≤ b in expected time
O(m + ϕ2 logm). Recall that x∗ ∈ PI if and only if
x∗ ∈ Σ(x∗, Ax ≤ b) if and only if x∗ is in the integer
hull of A′x ≤ b′. If x∗ is not in Σ(x∗, Ax ≤ b) we can
compute a separating hyperplane of x∗ from the integer
hull of A′x ≤ b′ in O(ϕ2) steps, using the equivalence of
separation and optimization.

All-together we have shown that the point contain-
ment problem in the integer hull of a polyhedron can
be solved in an expected number of O(m + ϕ2 logm)
operations. This concludes the proof of Theorem 1.

References

[1] B. Chazelle. Triangulating a simple polygon in linear
time. Discrete Comput. Geom., 6(5):485–524, 1991.

[2] K. L. Clarkson. Las vegas algorithms for linear and
integer programming when the dimension is small.
Journal of the Association for Computing Machinery,
42:488–499, 1995.

[3] F. Eisenbrand. Fast integer programming in fixed di-
mension. Technical Report MPI-I-2003-NWG2-002,
Max-Planck-Institut für Informatik, Saarbrücken, Ger-
many, 2003. to appear in the Proceedings of ESA 2003.

[4] F. Eisenbrand and S. Laue. A faster algorithm
for two-variable integer programming. manuscript,
http://www.mpi-sb.mpg.de/~eisen/2ip.ps.gz.

[5] M. Grötschel, L. Lovász, and A. Schrijver. Geometric
Algorithms and Combinatorial Optimization, volume 2
of Algorithms and Combinatorics. Springer, 1988.

[6] W. Harvey. Computing two-dimensional integer hulls.
SIAM Journal on Computing, 28(6):2285–2299, 1999.

[7] J. Matoušek, M. Sharir, and E. Welzl. A subexpo-
nential bound for linear programming. Algorithmica,
16(4-5):498–516, 1996.

[8] S. T. McCormick, S. R. Smallwood, and F. C. R.
Spieksma. Polynomial algorithms for multiprocessor
scheduling with a small number of job lengths. In
Proceedings of the Eighth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (New Orleans, LA, 1997),
pages 509–517, New York, 1997. ACM.

[9] S. T. McCormick, S. R. Smallwood, and F. C. R.
Spieksma. A polynomial algorithm for multiprocessor
scheduling with two job lengths. Mathematics of
Operations Research, 26(1):31–49, 2001.

[10] H. E. Scarf. An observation on the structure of
production sets with indivisibilities. Proc. Nat. Acad.
Sci. U.S.A., 74(9):3637–3641, 1977.

[11] A. Schrijver. Theory of Linear and Integer Program-
ming. John Wiley, 1986.

