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ABSTRACT

We consider the problem of computing large connected re-
gions in a triangulated terrain of size n for which the nor-
mals of the triangles deviate by at most some small fixed
angle. In previous work an exact near-quadratic algorithm
was presented, but only a heuristic implementation with no
guarantee was practicable. We present a new approxima-
tion algorithm for the problem which runs in O(n/ε2) time
and—apart from giving a guarantee on the quality of the
produced solution—has been implemented and shows good
performance on real data sets representing fracture surfaces
consisting of around half a million triangles. Further we
present a simple approximation algorithm for a related prob-
lem: given a set of n points in the plane, determine the
placement of the unit disc which contains most points. This
algorithm runs in linear time as well.

Categories and Subject Descriptors: I.3 [Comput-
ing Methodologies]: Computer Graphics; I.3.5 [Computer
Graphics]: Computational Geometry and Object Modeling

General Terms: Algorithms Measurement

Keywords: Planarity Terrain Approximation

1. INTRODUCTION

A terrain is a surface in R
3 defined by a function f :

R × R → R. If f is piecewise linear and the surface consists
of a collection of triangles, the terrain is called a triangulated
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Figure 1: Close-up on a fracture surface and a con-
nected almost planar region in dark.

irregular network (TIN). Given a triangulated irregular net-
work T , our goal is to find large, almost planar regions in
T . More formally, we want to find a subset of triangles T of
T and a vector −→r (called the reference normal), such that

1. the adjacency graph of the triangles in T is connected,

2. for each triangle t ∈ T , the angle between −→r and −→nt

is at most δ, where −→nt denotes the normal of triangle
t and δ is a given parameter, and

3. T is chosen such that the total weight of T is maxi-
mized, where the weight can be for example the num-
ber or the total area of the triangles in T (depending
on the application).

Note that this definition of ‘almost planar’ is not the only
possible one. But as this notion has been used in previous
work [6], we decided to borrow their definition. One ad-
vantage of this definition is that it does not depend on the
sizes of the terrain triangles. The problem of finding nearly
planar regions in a terrain has real-world applications in Ma-
terials Science where researchers are interested in analyzing
fracture surface topographies [9]. Figure 1 shows part of a
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Figure 2: Four placements of a disc and their re-
spective containment of a point set.

triangulated fracture surface and the approximately planar
region found by our implemented algorithm. Other applica-
tions are also possible in terrain simplification and analysis.

In [6] the above problem was reduced to the following:
Given an embedding of a degree-3 graph G on the unit
sphere S

2 with weighted vertices, compute a connected sub-
graph of maximum weight that is contained in some spher-
ical disk of fixed radius. So one might be also interested
in the following related problem: given a set of points S in
R

2, determine the placement of a unit disk that contains
the maximum number κ∗ of points from S. (See Figure 2.)
This problem has many applications in clustering and pat-
tern recognition, see for example [5]. Solving this problem
covers also the variant where the disk to be placed has radius
r as we can use scaling.

1.1 Related Work

Planarity Detection

Lange, Ray, Smid, and Wendt [6] solve the problem by con-
sidering the dual graph of the terrain triangulation (vertices
correspond to triangles, edges to adjacencies between trian-
gles). They embed this degree-3 graph on the unit sphere S

2

by placing each vertex v at the position on S
2 corresponding

to the normal of the triangle represented by v. The vertices
are weighted with the areas of the respective triangles. The
largest almost planar region can then be found by determin-
ing the maximum weight connected component of this graph
that is contained in a spherical disk of radius δ.

The exact solution to this problem follows from their ob-
servation that at least one of the spherical disks that con-
tains a maximum weight connected component has its center
on a vertex of the arrangement of n spherical disks which
is defined by placing a disk of radius δ around each vertex
v. But since just computing this arrangement takes Ω(n2),
they cannot obtain a sub-quadratic running time for the
overall algorithm. In fact their algorithm first computes the
arrangement and then uses a data structure to dynamically
maintain the connected components of a graph under inser-
tions and deletions of edges, which finally yields a running
time of O(n2 log n(log log n)3), instead of the naive O(n3).

As this algorithm is far from being practical, in the same
paper, the authors present an easy-to-implement heuristic

which computes almost planar regions quite quickly but un-
fortunately without any guarantee for the computed solu-
tion. In fact they show examples where their algorithm fails
to detect supposedly almost planar regions.

Point Containment in a Disk

In [1], Agarwal et al. present a probabilistic Monte-Carlo-
type algorithm which given a set of points in R

2 computes a
placement of the unit disk which contains (1− ε) · κ∗ points
with high probability. Here κ∗ denotes the number of points
in the optimal placement. The running time of their algo-
rithm for placing a unit disk is O(n log n) where ε is treated
as a constant. Their work also includes results for the place-
ment of other non-disk objects. Further they present a de-
terministic approximation algorithm which is based on cut-
tings and hence seems less attractive in practice.

A related problem is the following: Given a set of points
in R

2, find the disk of minimum radius that contains at least
k of these points. In [4], Har-Peled and Mazumdar present
an approximation algorithm which computes a disk of radius
r∗ · (1 + ε), where r∗ denotes the radius of the optimal disk,
which contains at least k points. The running time of their
algorithm is O(n + n · min{ 1

kε3
log2 1

ε
, k}).

1.2 Our Results

The two theoretical contributions of this paper are simple
approximation algorithms for the planarity detection and
the unit disk point containment problem.

In Section 2, we present an algorithm which, given some
parameters δ and ε produces a connected subterrain and a
reference normal such that all triangle normals in the sub-
terrain deviate at most (1+ ε) · δ from the reference normal,
and the weight of the subterrain is at least the weight of the
optimal subterrain with maximum deviation δ. The running
time of this algorithm is O(n/ε2). We sketch also a variant
of this algorithm with a better dependence on ε but an extra
polylogarithmic factor on n. For n sufficiently large, both
algorithms use optimal O(n) space.

Section 3 briefly describes an algorithm for placing a unit
disk in the plane such that the number of points contained
is maximized. Our algorithm yields a placement of a disk
of radius (1 + ε) which contains at least κ∗ points, where
κ∗ denotes the maximum number of points in any unit disk.
The running time of this algorithm is O(n/ε2). We also
sketch a more complicated variant running in O(n+(n/κ∗) ·
(1/ε3)) time which is better for κ∗ = ω(1/ε).

Observe that for these last algorithms our notion of ap-
proximation differs from the one used in [1] (they approxi-
mate the size of the resulting set) and rather resembles the
notion used in [4] where one approximates the constraining
radius/angle. Not only are the running times of our algo-
rithms linear in n and the dependencies on ε reasonable, but
also the constants involved are small enough to make them
relevant in practice.

The experimental and perhaps main contribution of this
paper is our implementation of the planarity detector which
runs in reasonable time on real-world test data consisting of
terrains with several hundred thousands triangles. We were
provided with the data by the materials science department
at Universität Magdeburg.
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2. FINDING A LARGE PLANAR

REGION APPROXIMATELY

2.1 Preliminaries

Let T be a TIN. We associate with T an undirected
weighted graph GT (V, E) as follows. Each triangle t in T
has an associated weight w(t) and corresponds to a vertex vt

in V . An edge connects two vertices of V if and only if the
corresponding triangles in T are adjacent. Note that GT is
the dual graph of T , is planar and has degree three.

Each vertex vt ∈ V is assigned the weight of its associated
triangle w(t) which can be, for instance, equal to the area of
the triangle t (when the objective is to maximize the area of
the detected region) or simply one (if we want to maximize
the number of triangles in the region). The weight w(V ′) of
any subset V ′ of V is defined as the sum of the weights of
the vertices in V ′.

Let δ > 0 and ε > 0 be two real parameters taking reason-
ably small values for our problem, for example, they satisfy
δε ≤ 1. Throughout, we denote the normal of a triangle t by−→nt. We use the notation ∠(v, u) to denote the angle between
two vectors −→v and −→u . For a point u ∈ R

3 we denote by −→u
the vector

−→
Ou, where O is the origin.

We present now some basic definitions. We say that a
subset of triangles T of T is δ-planar if (i) the triangles in
T are connected and (ii) there is a vector −→r such that for
each t ∈ T , ∠(r, nt) ≤ δ. A subset of triangles T of T is
optimal δ-planar if it has the largest possible weight over all
δ-planar subsets of T .

Our Notion of Approximation

There are at least two ways to define the notion of an ε-
approximate δ-planar set T . One way would be to require
T to be δ-planar and of weight at least (1 − ε) times the
weight of an optimal δ-planar set. Unfortunately solving
this type of approximation seems to be as difficult as solving
the problem exactly, see [6] for more details. We adopt the
following notion of approximation: A subset of triangles T
of T is ε-approximate δ-planar if it is δ(1+ε)-planar and has
weight at least as large as an optimal δ-planar set.

2.2 δε-Discretization

Let S
2 denote the unit sphere, i.e., the boundary of the

three-dimensional ball of radius one centered at the origin.
As it will be clear next, we only need consider the upper
hemisphere of S

2 but for simplicity we use the whole sphere
S

2.

For each triangle t ∈ T , we can associate a point vt ∈ S
2

that represents the normalized normal of triangle t. Specif-
ically, −→vt = −→nt/|−→nt|. Our goal is to approximate the space
S

2 of all normals by a finite set of points V ⊆ S
2 such that

for any s ∈ S
2, there is a point p ∈ V nearby.

Definition 2.1. A set of points V ⊆ S
2 is called a δε-

discretization of S
2 if ∀s ∈ S

2 : ∃p ∈ V with ∠(s, p) ≤ δ · ε.

Lemma 2.1. There exists a δε-discretization of S
2 of size

O(1/(δε)2) which can be computed in the same time.

k

k

Figure 3: Cube with sidelength two containing S
2

and with a k × k grid on each of its faces.

Proof. The following construction yields a δε-discretiza-
tion for S

2. Consider a cube L with side-length 2 centered
at the origin. Note that S

2 ⊂ L. Place a 2-dimensional grid
of size k×k with k = d

√
2/(δε)e over each of the six facets of

L. This generates k2 equally sized square grid cells on each
face of L, where each cell has side-length at most (δε

√
2),

and 6k2 + 2 grid points overall. See Figure 3. Let Q be the
set consisting of these grid points. Our δε-discretization V

of S
2 is defined as

V =
{ −→q
|−→q | : q ∈ Q

}
,

that is, for each grid-point q we shoot a ray from the origin
through q and include the point where the ray leaves S

2

into our set V. It remains to prove that V is indeed a δε-
discretization.

Consider any point s on S
2 and the point s̃ where the

ray starting at the origin and passing through s hits the
boundary of the cube L. Since k = d

√
2/(δε)e, there is a

grid point q ∈ Q that has distance to s̃ at most d = (
√

2/2) ·
(δε

√
2) = δε. We want to bound the angle ∠qOs = θ. θ is

maximized when ∠Os̃q = ∠Oqs̃. But since tan(θ/2) ≤ d/2,
we get θ = 2(θ/2) ≤ 2(arctan d/2) ≤ d = δε. Also, as
k = d

√
2/(δε)e, it follows that V has size |V| ≤ 12/(δε)2 +

18/(δε) + 18, which completes the proof.

2.3 The Basic Algorithm

We describe a first, simple method for our problem that
computes an ε-approximate solution and has running time
O(n/(δε)2).

1. Compute a δε-discretization V of S
2.

2. For each p ∈ V,

(a) Compute the set Vp of vertices vt with ∠(p, nt) ≤
(1 + ε) · δ.
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(b) Consider the subgraph of GT induced1 by the set
Vp and determine its connected component Cp

with maximum weight.

3. Return the set of triangles T corresponding to the
heaviest component Cp found in Step 2 and the re-
spective reference normal −→p .

In the following we prove the correctness and running time
of this algorithm.

Lemma 2.2. Given a triangulated irregular network T ,
and two real parameters δ > 0 and ε > 0 we can com-
pute in O(n/(δε)2) time an ε-approximate δ-planar subset
of triangles T of T .

Proof. By Lemma 2.1, computing the δε-discretization
takes O(1/(δε)2) time. For each element p ∈ V we have
to determine the subgraph induced by Vp and compute its
connected components, which can be done in O(n) time. So
the total running time of Step 2 is O(n/(δε)2) which also
dominates the overall running time.

For the correctness, observe that δ(1+ε)-planarity follows
immediately from the formulation of the algorithm; we only
consider triangles whose normals deviate at most (1 + ε) · δ
from some vector −→r and we only return triangles whose dual
vertices in GT form a connected component.

It remains to show that the weight of our computed set
is at least that of an optimal δ-planar set T ∗. For set T ∗

there exists a vector
−→
r∗ such that for all triangles t ∈ T ∗,

∠(r∗, nt) ≤ δ. Let p be a point in V for which ∠(p, r∗) =
minu∈V ∠(u, r∗). By the definition of V, the angle ∠(p, r∗)
must be at most δε. Then, for any triangle t ∈ T ∗ the angle
between −→nt and −→p is at most δ + (δε) = δ(1 + ε). Therefore
for all t ∈ T ∗, vt ∈ Vp and hence our algorithm will find a
connected component with at least the same weight.

The running time of the basic algorithm is optimal in
terms of n. But one may ask whether the dependence on
ε or δ can be improved. In particular, it would be nice to
remove the dependence on δ. In the following we will refine
our algorithm to obtain a running time of O(n/ε2).

2.4 The Refined Algorithm

There are two ideas which help the refined algorithm im-
prove the running time. First we determine a set of refer-
ence normals V

′ of size O(n/ε2) which contains all relevant
reference normals, avoiding the inspection of Ω(1/(δε)2) po-
tential reference normals. Secondly by a bucketing scheme,
we reduce significantly the number of times a triangle has
to be considered. The refined algorithm proceeds as follows:

1. For each triangle t ∈ T with normal nt, let pt be a
point in V for which ∠(pt, nt) = minu∈V ∠(u, nt); store
t in the bucket associated with pt.

2. Determine a set V
′ ⊂ V of potential reference normals

as V
′ = {p ∈ V : ∃pt with non-empty bucket and

∠(p, pt) ≤ (1 + 2ε) · δ}

3. For each r ∈ V
′,

1In other words, this graph arises from GT by keeping only those
vertices and edges that lie entirely in Vp.

(a) Collect the set of triangles Nr contained in buck-
ets of reference normals r′ ∈ V

′ with ∠(r′, r) ≤
(1 + 2ε) · δ.

(b) Prune Nr keeping only triangles t with ∠(nt, r) ≤
(1 + ε) · δ. Let N ′

r be the pruned set.

(c) Consider the subgraph of GT induced by the ver-
tices corresponding to triangles in N ′

r and deter-
mine its heaviest component Cr.

4. Output the heaviest component Cr from Step 3.

Before we prove the running time and the correctness of
the algorithm, we state a small lemma which informally says
that in the δε-discretization, the points are distributed some-
what sparsely.

Lemma 2.3. Let p be a point in the δε-discretization V

constructed as in Lemma 2.1. Then the number of points
p′ ∈ V with ∠(p, p′) < (1 + 2ε) · δ is O(1/ε2).

Proof. We first claim that for any two gridpoints p1, p2 ∈
V, ∠(p1, p2) ≥ (2/9)(δε). It is easy to see that the minimal
angle is attained between a corner p1 of the cube L and its
nearest grid-point p2. Assume without loss of generality that
p1 = (1, 1, 1) and p2 = (1, 1, 1− (1/k)). (Recall that k is the
size of the grid.) Let ∠p1Op2 = θ and ∠p2p1O = φ. In the

triangle 4p1Op2, we have sin φ =
√

2/3, |p1p2| = 1/k and

|Op2| =
√

2 + (1 − (1/k))2. It follows from the law of sines

that sin θ = (|p1p2|/|Op2|) sin φ ≥
√

2/(3k). For δε ≤ 1/
√

2
we get that θ ≥ sin θ ≥ (2/9)(δε), which proves our claim.

This fact implies that every grid point p projected to−→p /|−→p | on the sphere S
2 has an empty spherical disk of ra-

dius at least (δε)(2/9) that is free of other projected grid
points. A spherical disk of radius (1 + 2ε) · δ therefore can
contain only O(1/ε2) grid points by a simple packing argu-
ment.

Observe also that given a triangle normal nt we can de-
termine the grid point pt with ∠(pt, nt) = minu∈V ∠(u, nt)
in constant time by first determining which face of the cube
L is hit by the ray −→nt and then locating the position of the
intersection point within the grid on that face. We now state
the main theorem of this section.

Theorem 2.1. Given a triangulated irregular network T ,
and two real parameters δ > 0 and ε > 0 we can compute in
O(n/ε2) time an ε-approximate δ-planar subset of triangles
T of T .

Proof. We first prove correctness. Let rb and Tb denote
the reference normal and triangle set, respectively, as com-
puted by the basic algorithm. We claim rb ∈ V

′. This can
be easily seen as follows: Assume t ∈ Tb. t is stored in
the bucket associated with some reference normal r with
∠(r, nt) ≤ δε). Since ∠(rb, r) ≤ ∠(rb, nt) + ∠(rb, r) ≤
(1 + ε) · δ + εδ = (1 + 2ε) · δ, it follows that rb ∈ V

′. In
addition, using the same argument, when rb is examined
in Step 3, it must be that t ∈ Nr and t ∈ N ′

r. Thus our
refined algorithm computes the same solution as the basic
algorithm whose correctness was established before.

Let us now look at the running time. Step 1 of the re-
fined algorithm takes O(n) since for each t we can deter-
mine pt in constant time as well as access the associated
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bucket using hashing. Step 2, where we form the set V
′,

takes O(n/ε2) since there are at most n non-empty buck-
ets. For each of the non-empty buckets, we explore O(1/ε2)
grid points in the neighborhood according to Lemma 2.3.
Finally, for the overall running time of Step 3, observe that
again according to Lemma 2.3, each triangle can be collected
by at most O(1/ε2) reference normals and that the running
time of one iteration of Step 3 is O(|Nr|). Therefore Step 3
takes O(n/ε2) time overall.

Remark. It is clear that we can avoid the pruning Step 3(b)
in the algorithm by selecting a finer discretization initially.
This would simplify the algorithm, but it would also increase
by a constant factor the number of potential reference nor-
mals to be examined.

2.5 Scanning Algorithm

We propose another variant of our algorithm which im-
proves the 1/ε2 term but incurs an additional polylogarith-
mic factor in n. Similar to the exact algorithm in [6], we
use a data structure by Thorup [8] which allows the mainte-
nance of connected components of a graph under insertions
and deletions. The update time is O(log n(log log n)3) amor-
tized and one can also maintain which one is the heaviest
component within the same time bound, see [6] for more
details.

Recall that the basic algorithm of Section 2.3 naively
tested all O(1/(εδ)2) potential reference normals, each at
a cost of O(n). We will improve upon that by scanning
the grid-points in a certain order such that the result of
inspecting the previous grid point can be used in the in-
spection of the current. The order is defined as follows.
Consider all grid-points Fl which have a fixed x-coordinate:
Fl = {p ∈ V : px = l}. All grid-points in Fl lie on the bound-
ary of a square parallel to the yz-plane, so we call Fl a frame.
We pick one grid-point of the frame and compute, using the
data structure by Thorup, the decomposition into connected
components of the graph induced by all triangles located in
buckets within distance O((1 + O(ε)) · δ). We then move
on to the next grid-point of the frame in clockwise order
always inserting/deleting triangles appearing/disappearing
until we have reached the first grid-point again. Observe
that the contents of a bucket are inserted at most twice and
deleted at most once during the scan over the frame. Let Tl

be the set of triangles encountered. The running time of pro-
cessing frame Fl is clearly O(1/(ε2δ)+ |Tl| · log n(log log n)3),
since the frame has O(1/(εδ)) grid-points, we only inspect
O(1/(ε2δ)) buckets of grid-points nearby and have O(|Tl|)
insertion and deletion operations on Thorup’s data struc-
ture.

It is easy to see that all grid points in V can be covered by
(k+1)+(k−1) = 2k = O(1/(εδ)) frames (recall k is the grid-
size), e.g. k+1 frames with fixed x-coordinates and another
k − 1 frames with fixed y-coordinates. The running time
of the whole procedure is therefore O(1/(ε3δ2) + (

∑
l
|Tl|) ·

log n(log log n)3). For
∑ |Tl| we observe that a bucket (and

therefore each triangle in it) is inspected only by O(1/ε)
frames using a very similar argument as our Lemma 2.3,
so

∑
l
|Tl| = O(n/ε), yielding the following result which for

large values of n is worse than the running time of the refined
method, but for moderate values of n and sufficiently small
ε it may be of interest.

Theorem 2.2. Given a triangulated irregular network T ,
and two real parameters δ > 0 and ε > 0 we can compute in
O((n/ε) log n(log log n)3) + 1/(δ2ε3)) time an ε-approximate
δ-planar subset of triangles T of T .

3. FINDING THE UNIT DISK

CONTAINING MOST POINTS

Our algorithm for planarity detection was based on the
idea of determining a large connected component inside a
spherical disk of a fixed radius. A naturally related problem
is the following:

Given a set S of points in the plane, determine
a placement (x∗, y∗) for the center of a disc U of
unit radius such that the number κ = |U(x,y)∩S|
of covered points is maximized.

We will present a simple algorithm which in O(n/ε2) time
determines a placement (x, y) of a disc U 1+ε of radius 1 + ε
with |U1+ε

(x,y)∩S| ≥ κ∗. Here κ∗ denotes the maximal number

of points of S contained in a unit disk. Note that again as
in the previous section we are approximating the radius and
not the number of points captured.

3.1 Simple Approximation Algorithm

The idea of the algorithm is first to get a rough estimate
of κ∗ by putting a grid of width two over the point set and
then reexamine the interesting regions. Let k(i,j) = |{p ∈ S :
2i ≤ px < 2(i + 1) and 2j ≤ py < 2(j + 1)}| be the number
of points contained in grid cell (i, j) of the point set. Let
k = max(i,j) k(i,j). The algorithm proceeds as follows:

1. Locate each point p ∈ S in a grid of width 2 centered
at the origin.

2. Let C = {(i, j) :
∑i+1

g=i−1

∑j+1
h=j−1 k(g,h) ≥ k/4} be the

grid cells which have a ‘well-occupied’ neighborhood.

3. For each cell (i, j) ∈ C,

(a) Place a grid of width ε over (i, j).

(b) Check each of the O(1/ε2) grid points as center of

a potential disc U (1+ε) by counting the points of
the neighborhood that would fall into that disc.

4. Report the best disc encountered during Step 3.

We will first argue about the correctness and show that it
computes indeed a disc of radius (1 + ε) containing at least
κ∗ points.

Lemma 3.1. Assume point (x∗, y∗) is the center of an op-
timal placement for the unit disc, then there is a grid point
(x′, y′) inspected during the algorithm such that U(x∗,y∗) ⊂
U1+ε

(x′,y′).

Proof. Let us first show that the center of an optimal
placement of the unit disc falls inside a cell c ∈ C. As-
sume otherwise, then there are less than k/4 points in the
neighborhood of this optimal center that could be possibly
covered. But using our grid approximation we can cover at
least k/4 points since any grid cell can be covered by four
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unit discs and hence one of these discs must contain at least
k/4 points, which is a contradiction.

So we know that (x∗, y∗) falls in a cell c ∈ C. Let (x′, y′)
be the grid point inside c which is closest to (x∗, y∗). This
has distance at most ε/

√
2 hence the disc centered at (x′, y′)

with radius 1 + ε contains U(x∗,y∗).

Using the previous lemma we obtain the main result of this
section:

Theorem 3.1. Given a set of points S in the plane and
some ε > 0, we can determine in O(n/ε2) time a placement
(x, y) of a disc U1+ε of radius (1 + ε) with |U1+ε

(x,y) ∩ S| ≥
κ∗, where κ∗ denotes the maximal number of points in S
contained in a unit disc.

Proof. First observe that we have k/4 ≤ κ∗ ≤ 4k, since
any grid cell can be fully covered by four unit discs and any
unit disc intersects at most four grid cells.

Locating and counting all points in their respective grid
cells can be done in O(n) expected time using a standard
scheme for perfect hashing, which also allows to perform
the second step within the same time bounds. Observe that
|C| = O(n/k), since any cell with at least k/16 points ap-
pears in at most 8 neighborhoods. Step 3 requires for each
cell in C the inspection of O(1/ε2) potential centers. Each
of these inspections takes O(k) time by brute-force, yielding
a running time of O(n/ε2) for Step 3 which dominates the
overall running time.

3.2 A Variant for Large κ
∗

Our algorithm is clearly optimal in terms of the depen-
dence on n, still in some settings, in particular for κ∗ =
ω(1/ε), one can achieve a better dependence on ε. In the
following we sketch an improvement for this case. The basic
idea of the approach is to replace the brute-force neighbor-
hood exploration for each grid-point by a query to a suitable
data structure for approximate weighted range counting [3].

For each cell c = (i, j) ∈ C, we put a grid of width
ε not only covering (i, j) but also its neighbors {(i′, j′) :
i − 1 ≤ i′ ≤ i + 1, j − 1 ≤ j′ ≤ j + 1}. For each of the
resulting O(1/ε2) mini-cells we count the number of points
contained and associate it with a representative which is
located at the center of each mini-cell and has weight ac-
cording to the number of points in the cell. For these repre-
sentatives we construct a data structure for ε-approximate
weighted range counting in O((1/ε2) log(1/ε2)) time. Now
each grid point contained in cell c, instead of using the
O(k) brute-force exploration of its neighborhood like before,
queries this data structure with a (1+3ε) query, which takes
O(log(1/ε2) + 1/ε) time. The weight returned corresponds
to a set of points that can surely be enclosed in a disc of ra-
dius (1+ 5ε). Furthermore all points within distance (1+ ε)
are guaranteed to be accounted for. So correctness follows
from the same arguments as in the previous algorithm and
we obtain the following result which is an improvement over
our previous algorithm for κ∗ = ω(1/ε).

Theorem 3.2. Given a set of points S in the plane and
some ε > 0, we can determine in time O(n+(n/κ∗)·(1/ε3)) a
placement (x, y) of a disc U1+ε of radius (1+ε) with |U1+ε

(x,y)∩
S| ≥ κ∗, where κ∗ denotes the maximal number of points in
S contained in a unit disc.

(i+1, j)(i, j)

(i, j+1) (i+1, j+1)

Figure 4: Triangulation scheme for the array of
height values

4. IMPLEMENTATION

We have implemented the refined algorithm of Section 2.4
in C++ using the LEDA library of efficient data types and
algorithms [7]. We used several data sets representing frac-
ture surfaces of metals. Input data were given 512 × 512
raster images with the intensity of each pixel corresponding
to its height value. To obtain the TIN, we triangulated the
point set by creating triangles (i, j), (i + 1, j), (i + 1, j + 1)
and (i, j), (i, j + 1), (i + 1, j + 1) for all possible i and j. See
Figure 4 for our triangulation scheme.

There are some aspects of the algorithm which can be
tuned for better performance in practice, without of course
sacrificing the theoretical guarantee of the output.

Tuning for Practical Performance

Looking at the behavior of the original algorithm as stated
in Section 2 we have come up with three heuristics which
considerably reduced the running time of our algorithm in
practice. We refer to Section 5 for actual timings of the
improvements.

Prioritizing the Reference Normals

Naturally it seems to make sense first to examine those refer-
ence normals for which the weight of the triangles in buckets
nearby is large. So what we did in our implementation is
to associate with each reference normal the weight of all tri-
angles contained in buckets at distance at most (1 + 2ε) · δ
and then process them in decreasing order of weight. We
can stop examining further reference normals as soon as the
weight of the best solution found so far exceeds the asso-
ciated weight of the next reference normal. The weight
information can easily be collected as follows: In the first
phase while computing normals and bucketing the triangles
we also take care of the weight and add it to the respective
bucket. Then in the second phase, when potential reference
normals are determined we propagate for each non-empty
bucket its weight over all reference normals at distance at
most (1+2ε) ·δ. The running time guarantee is only affected
by the sorting step for the reference normals according to
their weight. This costs O((n/ε2) · log(n/ε2)) time, which in
practice was negligible.

Prepruning of Triangles

In our data set, there is typically quite a number of trian-
gles t for which all three neighboring triangles have normals
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more than 2(1 + ε)δ off −→nt. These triangles are isolated and
cannot be part of a larger connected region of the output.
Thus we can preprune these triangles in the first phase when
bucketing and simply not consider them in the next steps of
the algorithm. We only have to ensure at the end that the
computed region has weight at least as large as the heavi-
est single triangle of the terrain. This does not affect the
theoretical running time guarantee.

Fast Bucket Pruning of Relevant Triangles

In Step 3(b) where we determine the set of relevant trian-
gles N ′

r of the refined algorithm we collect all triangles in
buckets within distance at most (1 + 2ε) · δ and test each
triangle for normal deviation of at most (1 + ε) · δ. But
clearly, all triangles in buckets within distance δ will fulfill
this requirement and therefore can be added without an ad-
ditional check (which is relatively expensive as it involves
floating-point computation). This does not affect the theo-
retical running time guarantee.

5. EXPERIMENTAL EVALUATION

Our program was compiled using g++ 3.2.3 with -O flag
and LEDA 4.4 and timings were taken on a single processor
Pentium 4, 1.8 GHz machine with 256 MB RAM running
Debian Linux kernel version 2.4.20. geomview [2] was used
for visualization of the results.

We benchmarked our implementation on several data sets
provided by the Department of Materials Science at Uni-
versität Magdeburg, Germany. Researchers in the Materials
Science are interested in surface topographies of materials
since they provide useful information about the generation
process and the internal structure of the material. Surfaces
generated by fracture, wear, corrosion and machining are of
interest. Among many other criteria, they want to exam-
ine feature-related parameters like facets in brittle fracture
surfaces. All the data were acquired by confocal laser scan-
ning microscopy. The following test sets were used for our
experiments:

T: A surface with three artificially introduced almost planar
triangles the largest of which our algorithm is supposed
to detect.

S2-28, S2-30, S2-31, S2-34: Terrains with many terrace-
like planar subregions.

K8: A very rough surface which exhibits only few planar
subregions.

For each experiment we state the name of the test set (Set
in the tables), the dimensions of the raster image (Dim),
the number of triangles in the resulting terrain (n), the al-
lowed deviation δ (in radians, note that 0.2 radians is about
11.5 degrees), the desired approximation quality ε, the max-
imization objective (Obj which is either the total number
(C) or area (A) of the triangles), the running time in sec-
onds (Time), and finally the objective function value of the
solution obtained (Val.).

5.1 Efficiency of Speed-Up Heuristics

In this part we show how much our proposed heuristics
improve the running-time in practice. To allow for a more

precise evaluation we have profiled the parts of the program
which correspond to the single phases of our algorith. Table
header Norm. denotes the time to compute the normals of
all triangles and assigning each triangle to its closest bucket
in the δε-discretization. Table header Cand. is the time
to determine all potential reference normals. Table head-
ers Coll., Prune, and Grow are the accumulated times
for collecting, pruning, and growing connected components
on the relevant triangles for a reference normal. We ex-
perimented with all possible settings of slow or fast bucket
pruning routine (sP/fP, Table header: B), with or without
prepruning (PP/nPP, Table header: PP), and both area
(A) and number of triangles (C) as objective function (Ta-
ble header: Obj). The results taken from the test sets T
and S2-28 can be found in Table 1. We remark that our al-
gorithm indeed detected the largest triangular planar region
artificially created in test set T.

Pruning Heuristics

As it can be observed, each of the pruning heuristics on its
own yields a gain of at least 20% in running time. Com-
bined the three heuristics reduce the running time by nearly
a factor of two. The fast bucket pruning only affects this
phase, whereas prepruning decreases the running time of all
phases since the number of triangles to be looked at as well
as the number of reference normals to be considered is re-
duced. Only the initial normal computation and bucketing
phase requires more effort, which is though negligible.

Area vs. Count

In general, the running times for area maximization as objec-
tive function are higher than for just counting the number
of triangles. This is due to the fact that prioritizing gets
less effective when the maximum area is the objective. Very
steep triangles have a very large area and hence the priori-
ties of the respective reference normals become very high (if
there are several of these steep triangles). So most of the
time they have to be examined even though they will not
lead to a large terrain (as they mostly occur isolated). This
can only partly be compensated for by using the prepruning
heuristic.

Prioritizing

In the same table the reference normals were always priori-
tized and we stopped examining as soon as the best solution
found so far exceeded the priority level of the next reference
normal. We have not listed the comparison with the un-
prioritized version, though the running time in this case is
about that using slow bucket pruning and no prepruning
with triangle area weights. Furthermore we note that the
final best solution is typically found with one of the first
reference normals, so most of the running time is spent on
checking that no better solution exists.

5.2 Dependence on n, ε and δ

In the following we will examine more closely the depen-
dence of the running time on the parameters n, ε and δ. For
the remaining part of the section we run experiments with
all accelerating options turned on, i.e. with prioritized can-
didate selection, fast bucket pruning, as well as prepruning.
In addition, we aim at maximizing the number of triangles
in the almost planar region.
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Set Dim n δ ε Obj B PP Time Obj
Norm. Cand. Coll. Prune Grow Total Val.

S2-28 512x512 522k 0.2 0.2 # sP nPP 2.7 0.27 15.55 64.07 28.85 112.94 5587
S2-28 512x512 522k 0.2 0.2 # fP nPP 2.74 0.27 15.48 36.79 29.17 85.74 5587
S2-28 512x512 522k 0.2 0.2 # sP PP 3.08 0.27 10.51 49.69 24.47 89.2 5587
S2-28 512x512 522k 0.2 0.2 # fP PP 3.01 0.26 10.77 28.43 24.29 68.09 5587
S2-28 512x512 522k 0.2 0.2 A sP nPP 2.8 0.28 23.65 73.65 34.54 137.31 2793
S2-28 512x512 522k 0.2 0.2 A fP nPP 2.92 0.28 23.72 45.1 35.2 109.18 2793
S2-28 512x512 522k 0.2 0.2 A sP PP 3.07 0.28 15.53 56.73 28.32 105.92 2793
S2-28 512x512 522k 0.2 0.2 A fP PP 3.1 0.27 15.46 33.25 27.84 81.78 2793
T 512x512 522k 0.2 0.2 # sP nPP 2.91 0.3 25.52 76.92 33.54 140.9 10057
T 512x512 522k 0.2 0.2 # fP nPP 2.87 0.29 25.56 44.74 34.02 109.24 10057
T 512x512 522k 0.2 0.2 # sP PP 3.29 0.29 13.26 45.95 21.87 86.02 10057
T 512x512 522k 0.2 0.2 # fP PP 3.15 0.28 13.5 27.17 21.47 66.74 10057
T 512x512 522k 0.2 0.2 A sP nPP 3.06 0.29 32.75 86.01 39.02 163.3 7113
T 512x512 522k 0.2 0.2 A fP nPP 3.06 0.29 33.4 51.91 38.7 129.69 7113
T 512x512 522k 0.2 0.2 A sP PP 3.36 0.29 19.53 57.3 26.74 109.39 7113
T 512x512 522k 0.2 0.2 A fP PP 3.34 0.3 19.43 34.49 27.21 86.85 7113

Table 1: Evaluation of acceleration heuristics and detailed profiling.

Set Dim n ε Obj Time Val.

S2-30 64x64 7k 0.2 # 0.96 462
S2-30 90x90 15k 0.2 # 2.62 462
S2-30 128x128 32k 0.2 # 5.7 462
S2-30 181x181 64k 0.2 # 10.24 778
S2-30 256x256 130k 0.2 # 19.55 1209
S2-30 384x384 293k 0.2 # 41.9 2773
S2-30 512x512 522k 0.2 # 78.67 2773

Table 2: Running time versus n for δ = 0.2.

Dependence on n

To determine the dependence on n we took an i×i crop from
the lower left corner of the S2-30 data set and varied i. See
Table 2 and Figure 5 for the results. As to be expected, the
running time grows linearly in the number of triangles. So
we are very confident that our program can be used also for
much larger datasets.

In Figure 5 we have denoted by an additional curve the
time when the final solution was detected. Note that this
happened within the first ten seconds due to the prioritiza-
tion scheme.

Dependence on ε

For the test set S2-31 we have varied ε. The results can
be found in Table 3 and Figure 6. As to be expected the
increase in running time with changing ε is the most pro-
nounced. The increase kicks in for values of ε ≤ 0.4, making
our approach not so practicable for ε < 0.05. For values
ε > 0.4 our program for this test set behaves basically inde-
pendent of ε.

In Figure 6, we have denoted by an additional curve the
time when the final solution was found. Note that this hap-
pened always within the first 20 seconds due to the prioriti-
zation scheme.

Set n δ ε Obj Time Val.

S2-31 522k 0.3 1.4 # 20.89 58115
S2-31 522k 0.3 1.2 # 17.95 58097
S2-31 522k 0.3 1 # 28.85 57624
S2-31 522k 0.3 0.8 # 19.47 50673
S2-31 522k 0.3 0.6 # 20.73 50673
S2-31 522k 0.3 0.4 # 38.66 7281
S2-31 522k 0.3 0.2 # 88.55 7281
S2-31 522k 0.3 0.1 # 262.8 7281
S2-31 522k 0.3 0.05 # 970.37 7281

Table 3: Running time versus ε.

Set n δ ε Obj Time Val.

S2-34 522k 1 0.2 # 88.15 332091
S2-34 522k 0.9 0.2 # 73.05 257773
S2-34 522k 0.8 0.2 # 94.48 213976
S2-34 522k 0.7 0.2 # 90.19 188021
S2-34 522k 0.6 0.2 # 61.45 120855
S2-34 522k 0.5 0.2 # 57.83 107414
S2-34 522k 0.4 0.2 # 40.35 79463
S2-34 522k 0.3 0.2 # 96.63 1856
S2-34 522k 0.2 0.2 # 77.1 1856
S2-34 522k 0.1 0.2 # 68.22 1856
S2-34 522k 0.05 0.2 # 78.81 1856

Table 4: Running time versus δ.
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Figure 5: Running time versus n for δ = 0.2, ε = 0.2.
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Figure 6: Running time versus ε for n = 522k, δ = 0.3.

Dependence on δ

Table 4 shows the running times on the data set S2-34 for
several values of δ. The rather large variations in the run-
ning time are mostly due to the way in which the triangles
are bucketed and the varying efficiency of the prioritizing
heuristic. There seems to be no real dependence between
the running time and the choice of δ. Figure 7 depicts a
top-view of the largest almost planar regions corresponding
to the numbers in Table 4.

5.3 Some More Examples

To compare running times between different test data sets,
we have run our algorithm with the parameters δ = 0.2, ε =
0.2 on six of the data sets. We only considered a 500 × 500
crop as the set K8 had a completely flat strip on the right
part of the image, probably due to some problem during
data acquisition. As we also used the area as maximization
objective, the running times are slightly higher than in the
experiments before. Table 5 shows the results.

Finally we synthetically generated some test sets by tak-
ing a surface with slightly (parabolic) increasing slope and
perturbing unwanted data points. One of the results can be
seen in Figures 8 and 9.

Figure 7: Discovered regions for parameters δ = 1.0,
δ = 0.8, δ = 0.4, δ = 0.1 (top to bottom, left to right)
in fracture surface S2-34.

Set n δ ε Obj Time Val.

T 498k 0.2 0.2 A 79.24 7113
S2-28 498k 0.2 0.2 A 76.48 2793
S2-30 498k 0.2 0.2 A 85.17 1386
S2-31 498k 0.2 0.2 A 77.16 3640
S2-34 498k 0.2 0.2 A 80.49 928
K8 498k 0.2 0.2 A 106.1 1704

Table 5: Running times for various test sets.

5.4 Further Remarks

So far we have not compared our implementation with the
heuristic described in [6], since we could only obtain a partial
implementation of this algorithm (the boundary correction
step and the shifting mentioned there were not included).
This implementation was simple and fast but it also can very
easily miss a large almost planar region and has no control
on δ. A full implementation would be harder to fool, but
it would also substantially increase the running time (we
believe to more than 40 seconds). Still bad examples can be
easily constructed for it too.

What might be interesting for practitioners is the fact
that in all our cases, the final result of our algorithm was
found within the first 20 seconds of the running time due
to the prioritization heuristic. The remaining running time
was spent on checking that there exists no larger planar re-
gion. If one is not required to have a strict guarantee for the
quality of the result, one might simply stop the algorithm,
for example, after thirty seconds and use the best solution
computed so far.
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Figure 8: Discovered region shaded in dark for δ =
0.3, ε = 0.2 in an artificial test set.

Figure 9: Close-up of an almost planar region from
the same test set as in Figure 8.

6. CONCLUSIONS

We have presented simple approximation algorithms for
detecting connected almost planar regions in a terrain and
placing a unit disk in the plane to maximize point contain-
ment. Their running time is linear in n and the dependence
on 1/ε is only quadratic. The algorithm for planarity de-
tection has been implemented and tested on real-world data
from an application domain in Materials Science and per-
forms quite well in practice.

There are still a number of issues to be looked at partic-
ularly on the practical side. For instance it might be inter-
esting to pose additional conditions on the structure of the
connected almost planar region. At the moment our algo-
rithm sometimes outputs large strip-like regions, so one may
only consider fat planar regions. The regions computed by
our algorithm also very often exhibit holes as can be seen
in Figure 1, which might be undesirable. Different measures
of ‘near planarity’ are of interest as well. In future work we
plan to extend our implementation to enumerate the large
almost planar regions in decreasing order of weight.

Finally our algorithm works for any surface mesh, thus
it can also be used to detect flat regions on any polyhedral
surface.
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