
Chapter 3: Operating-System Structures

� System Components
� Operating System Services
� System Calls
� System Programs
� System Structure
� Virtual Machines
� System Design and Implementation
� System Generation

Common System Components

� Process Management
� Main Memory Management
� File Management
� I/O System Management
� Secondary Management
� Networking
� Protection System
� Command-Interpreter System

Process Management

� A process is a program in execution. A process needs
certain resources, including CPU time, memory, files, and
I/O devices, to accomplish its task.

� The operating system is responsible for the following
activities in connection with process management.
� Process creation and deletion.
� Process suspension and resumption.
� Mechanisms for:

� process synchronization
� process communication

Main-Memory Management

� Memory is a large array of words or bytes, each with its
own address. It is a repository of quickly accessible data
shared by the CPU and I/O devices.

� Main memory is a volatile storage device. It loses its
contents in the case of system failure.

� The operating system is responsible for the following
activities in connections with memory management:
� Keep track of which parts of memory are currently being

used and by whom.
� Decide which processes to load when memory space

becomes available.
� Allocate and deallocate memory space as needed.

File Management

� A file is a collection of related information defined by its
creator. Commonly, files represent programs (both
source and object forms) and data.

� The operating system is responsible for the following
activities in connections with file management:
� File creation and deletion.
� File organization (directory creation and deletion).
� Support of primitives for manipulating files and directories

(read/write).
� Mapping files onto secondary storage.

I/O System Management

� The I/O system consists of:
� A buffer-caching and spooling system
� A general device-driver interface
� Drivers for specific hardware devices

Secondary-Storage Management

� Since main memory (primary storage) is volatile and too
small to accommodate all data and programs
permanently, the computer system must provide
secondary storage to back up main memory.

� Most modern computer systems use disks as the
principle on-line storage medium, for both programs and
data.

� The operating system is responsible for the following
activities in connection with disk management:
� Free space management
� Storage allocation
� Reliability (RAID)
� Disk scheduling

Networking (Distributed Systems)

� A distributed system is a collection of processors that do
not share memory or a clock.

� Communication takes place using a protocol:
� FTP: examine secondary storage (list files, read contents)

and remotely alter it (add, delete files).
� HTTP: like FTP but low-setup overhead, ideal for quick

transfer of small content.
� POP/IMAP: like FTP but partial contents of mailbox file are

transferred and changed. POP has single mailbox file; IMAP
supports folder-oriented organization.

Protection System

� Protection refers to a mechanism for controlling access
by programs, processes, or users to both system and
user resources.

� The protection mechanism must:
� allow user to specify the controls to be imposed (e.g. user

can set file access permissions).
� provide a means of enforcement (e.g. ensure user is

identified before an attempt is made to access a file).
� distinguish between authorized and unauthorized usage.

� Security:
� security vs. protection: external vs. internal.
� covers user authentication, logging/auditing trails, encrypted

communications

Command-Interpreter System

� Many commands are given to the operating system by
control statement which deal with:
� process creation and management
� I/O handling
� secondary-storage management
� main-memory management
� file-system access
� protection
� networking

Command-Interpreter System (Cont.)

� The program that reads and interprets control statements
(typed text) is called variously:
� command-line interpreter
� shell (in UNIX: csh, tcsh, bash)

Gets and executes the next command statement.
� Statement can be built-in command (MS-DOS) or a

regular program that calls system calls and formats result
for user (UNIX).

� Alternative is GUI: control defined via user actions (mouse
or joystick clicks, touch screen). Most such systems still
have command-line interpreter for administration (often a
security loophole, e.g. voting machine tampering).

Operating System Services

� Program execution – system capability to load a program into
memory and to run it.

� I/O operations – since user programs cannot execute I/O
operations directly, the operating system must provide some
means to perform I/O.

� File-system manipulation – program capability to read, write,
create, and delete files.

� Communications – exchange of information between processes
executing either on the same computer or on different systems
tied together by a network. Implemented via shared memory or
message passing.

� Error detection – ensure correct computing by detecting errors
in the CPU and memory hardware, in I/O devices, or in user
programs.

Additional Operating System Functions

Additional functions exist not for helping the user, but rather
for ensuring efficient system operations:

• Resource allocation – allocating resources to multiple users
or multiple jobs running at the same time.

• Accounting – keep track of and record which users use how
much and what kinds of computer resources for account
billing or for accumulating usage statistics.

• Protection – ensuring that all access to system resources is
controlled.

System Calls

� System calls provide the interface between a running
program and the operating system.
� Generally available as assembly-language instructions.
� Languages defined to replace assembly language for

systems programming allow system calls to be made
directly (e.g., C, C++)

� Three general methods are used to pass parameters
between a running program and the operating system.
� Pass parameters in registers.
� Store the parameters in a table in memory, and the table

address is passed as a parameter in a register.
� Push (store) the parameters onto the stack by the program,

and pop off the stack by operating system.

Passing of Parameters As A Table

Process Management: MS-DOS

At System Start-up Running a Program

Process Management: UNIX

Communication Models

Message Passing Shared Memory

� Communication may take place using either message
passing or shared memory.

System Programs

� System programs provide a convenient environment for
program development and execution. The can be divided
into:
� File manipulation: Unix ‘cp’
� Status information: Unix ‘ps’
� File modification: Unix ‘cat’
� Programming language support: Unix ‘cc’
� Program loading and execution: Windows ‘start’
� Communications: Windows ‘ipconfig’
� Application programs: Windows ‘ie’

� Most users’ view of the operating system is defined by
system programs, not the actual system calls.

MS-DOS System Structure

� MS-DOS – written to provide the most functionality in the
least space
� Not divided into modules
� Although MS-DOS has some structure, its interfaces and

levels of functionality are not well separated

MS-DOS Layer Structure

UNIX System Structure

� UNIX – limited by hardware functionality, the original
UNIX operating system had limited structuring. The UNIX
OS consists of two separable parts.
� Systems programs
� The kernel

� Consists of everything below the system-call interface
and above the physical hardware

� Provides the file system, CPU scheduling, memory
management, and other operating-system functions; a
large number of functions for one level.

UNIX System Structure

Layered Approach

� The operating system is divided into a number of layers
(levels), each built on top of lower layers. The bottom
layer (layer 0), is the hardware; the highest (layer N) is
the user interface.

� With modularity, layers are selected such that each uses
functions (operations) and services of only lower-level
layers.

An Operating System Layer

OS/2 Layer Structure

Microkernel System Structure

� Moves as much from the kernel into “user” space.
� Communication takes place between user modules using

message passing.
� Benefits:

- easier to extend a microkernel via user-space
extensions.
- easier to port the operating system to new architectures
(less code to port)
- more reliable (less code is running in kernel mode)
- more secure (less to protect)

� Windows NT: Win32, POSIX subsystem are user-level.

Virtual Machines

� A virtual machine is a program that acts as a hardware
simulator. Run N copies of this simulator, the one
physical machine becomes N virtual machines.

� Each machine can run:
� a single process under a simple OS
� all processes of a single user under a moderate OS
� a complex time-sharing OS (e.g. for debugging)

� “OS” has three parts:
� hardware simulator,
� resource (processor, memory) sharing between simulators,
� OS running inside each simulator.

Virtual Machines (Cont.)

� The resources of the physical computer are shared to
create the virtual machines.
� CPU scheduling can create the appearance that users have

their own processor.
� Spooling and a file system can provide virtual card readers

and virtual line printers.
� A normal user time-sharing terminal serves as the virtual

machine operator’s console.

System Models

Non-virtual Machine Virtual Machine

Advantages of Virtual Machines

� Complete protection of system resources since each
virtual machine is isolated from all other virtual machines.

� Ideal for operating-systems research and development.
System development does not disrupt normal system
operation.

Disadvantage of Virtual Machines

� No direct sharing of resources.
� Difficult to implement. For efficiency, we run non-

privileged instruction on hardware. But then, what if…
� User program under simulator makes system call in real

user mode, triggers real interrupt
� Real OS, in real kernel mode, sets simulator to simulated

kernel mode, restarts simulator’s implementation of system
call in real user mode

� Simulator runs privileged instruction (e.g. I/O) in real user
mode, triggers real trap

� Real OS simulates I/O in real kernel mode, restarts
simulator in simulated kernel mode and real user mode.

� If this was hard to understand, imagine how hard it is to
code it correctly…

Java Virtual Machine

� Compiled Java programs are platform-neutral bytecodes
executed by a Java Virtual Machine (JVM).

� JVM consists of
- class loader
- class verifier (no pointers, no stack over/underflow)
- runtime interpreter

� Just-In-Time (JIT) compilers increase performance

Java Virtual Machine

VMWare

� Commercial product
� Simulates a basic PC
� Persistent state of machine stored in two real files:

� NVRAM (non-volatile RAM)
� Disk contents (1 file per 1GB of simulated disk)

� Simulated disk when simulator runs
� Discard changes (disk loaded in memory)
� Keep changes (real file was modified)
� Choose to commit/revert: database-like journal kept on disk,

can issue commit or abort

� Different than SoftWindows: simulates Win32 API, not
generic hardware allowing any OS.

System Design Goals

� User goals – operating system should be convenient to
use, easy to learn, reliable, safe, and fast.

� System goals – operating system should be easy to
design, implement, and maintain, as well as flexible,
reliable, error-free, and efficient.

Mechanisms and Policies

� Mechanisms determine how to do something, policies
decide what will be done.

� The separation of policy from mechanism is a very
important principle, it allows maximum flexibility if policy
decisions are to be changed later.

System Implementation

� Traditionally written in assembly language, operating
systems can now be written in higher-level languages.

� Code written in a high-level language:
� can be written faster.
� is more compact.
� is easier to understand and debug.

� An operating system is far easier to port (move to some
other hardware) if it is written in a high-level language.

System Generation (SYSGEN)

� Operating systems are designed to run on any of a class
of machines; the system must be configured for each
specific computer site. (Think Windows/Linux installer.)

� SYSGEN program obtains information concerning the
specific configuration of the hardware system.

� Booting – starting a computer by loading the kernel.
� Bootstrap program – code stored in ROM that is able to

locate the kernel, load it into memory, and start its
execution.

