Chapter 3: Operating-System Structures

System Components

Operating System Services
System Calls

System Programs

System Structure

Virtual Machines

System Design and Implementation
System Generation



Common System Components

Process Management

Main Memory Management
File Management

/O System Management
Secondary Management
Networking

Protection System
Command-Interpreter System



Process Management

B A process is a program in execution. A process needs
certain resources, including CPU time, memory, files, and
/O devices, to accomplish its task.

m The operating system is responsible for the following
activities in connection with process management.
= Process creation and deletion.
= Process suspension and resumption.
= Mechanisms for:
~| process synchronization
=/ process communication



Main-Memory Management

m Memory is a large array of words or bytes, each with its
own address. It is a repository of quickly accessible data
shared by the CPU and I/O devices.

m Main memory is a volatile storage device. It loses its
contents in the case of system failure.
m The operating system is responsible for the following
activities in connections with memory management:
= Keep track of which parts of memory are currently being
used and by whom.

= Decide which processes to load when memory space
becomes available.

= Allocate and deallocate memory space as needed.



File Management

m Afile is a collection of related information defined by its
creator. Commonly, files represent programs (both
source and object forms) and data.

m The operating system is responsible for the following
activities in connections with file management:
= File creation and deletion.
= File organization (directory creation and deletion).

= Support of primitives for manipulating files and directories
(read/write).

= Mapping files onto secondary storage.



I/O System Management

m The I/O system consists of:
= A buffer-caching and spooling system
= A general device-driver interface
= Drivers for specific hardware devices



Secondary-Storage Management

m Since main memory (primary storage) is volatile and too
small to accommodate all data and programs
permanently, the computer system must provide
secondary storage to back up main memory.

m Most modern computer systems use disks as the
principle on-line storage medium, for both programs and
data.

m The operating system is responsible for the following
activities in connection with disk management:
= Free space management

Storage allocation

= Reliability (RAID)

Disk scheduling

'H



Networking (Distributed Systems)

m A distributed system is a collection of processors that do
not share memory or a clock.

m Communication takes place using a protocol:

= FTP: examine secondary storage (list files, read contents)
and remotely alter it (add, delete files).

= HTTP: like FTP but low-setup overhead, ideal for quick
transfer of small content.

= POP/IMAP: like FTP but partial contents of mailbox file are
transferred and changed. POP has single mailbox file; IMAP
supports folder-oriented organization.



Protection System

Protection refers to a mechanism for controlling access
by programs, processes, or users to both system and
UsSer resources.

The protection mechanism must:

= allow user to specify the controls to be imposed (e.g. user
can set file access permissions).

= provide a means of enforcement (e.g. ensure user is
identified before an attempt is made to access a file).

« distinguish between authorized and unauthorized usage.
Security:
= security vs. protection: external vs. internal.

= covers user authentication, logging/auditing trails, encrypted
communications



Command-Interpreter System

m Many commands are given to the operating system by
control statement which deal with:
= process creation and management
/O handling
= secondary-storage management
main-memory management
file-system access
protection
networking

Al
%

)
Q)

Al
%

Al
%

)
Q)



Command-Interpreter System (Cont.)

m The program that reads and interprets control statements
(typed text) is called variously:
= command-line interpreter
= shell (in UNIX: csh, tcsh, bash)
Gets and executes the next command statement.

m Statement can be built-in command (MS-DOS) or a
regular program that calls system calls and formats result
for user (UNIX).

m Alternative is GUI: control defined via user actions (mouse
or joystick clicks, touch screen). Most such systems still
have command-line interpreter for administration (often a
security loophole, e.g. voting machine tampering).



Operating System Services

Program execution — system capability to load a program into
memory and to run it.

I/O operations — since user programs cannot execute 1/0O
operations directly, the operating system must provide some
means to perform 1/O.

File-system manipulation — program capability to read, write,
create, and delete files.

Communications — exchange of information between processes
executing either on the same computer or on different systems
tied together by a network. Implemented via shared memory or
message passing.

Error detection — ensure correct computing by detecting errors
in the CPU and memory hardware, in I/O devices, or in user
programs.



Additional Operating System Functions

Additional functions exist not for helping the user, but rather
for ensuring efficient system operations:

® Resource allocation — allocating resources to multiple users
or multiple jobs running at the same time.

® Accounting — keep track of and record which users use how
much and what kinds of computer resources for account
billing or for accumulating usage statistics.

® Protection — ensuring that all access to system resources is
controlled.



System Calls

m System calls provide the interface between a running
program and the operating system.
= @Generally available as assembly-language instructions.
= Languages defined to replace assembly language for
systems programming allow system calls to be made
directly (e.g., C, C++)
m Three general methods are used to pass parameters
between a running program and the operating system.
= Pass parameters in registers.
= Store the parameters in a table in memory, and the table
address is passed as a parameter in a register.

= Push (store) the parameters onto the stack by the program,
and pop off the stack by operating system.



Passing of Parameters As A Table

X

register

X: parameters
for call

use parameters code for
load address X from table X system
-

system call 13 call 13

user program

operating system



Process Management: MS-DOS

free memory

free memory

process

command

interpreter command
interpreter

kernel kernel

(a) (b)
At System Start-up Running a Program




Process Management: UNIX

process D

free memory

process C

iInterpreter

process B

kernel




Communication Models

m Communication may take place using either message
passing or shared memory.

process A process A

shared memory

process B process B

kernel kernel

Message Passing Shared Memory



System Programs

B System programs provide a convenient environment for
program development and execution. The can be divided
Into:

= File manipulation: Unix ‘cp’

= Status information: Unix ‘ps’

= File modification: Unix ‘cat’

= Programming language support: Unix ‘cc’

= Program loading and execution: Windows ‘start’
= CGommunications: Windows ‘ipconfig’

= Application programs: Windows ‘ie’

m Most users’ view of the operating system is defined by
system programs, not the actual system calls.



MS-DOS System Structure

m MS-DOS — written to provide the most functionality in the
least space

= Not divided into modules

= Although MS-DOS has some structure, its interfaces and
levels of functionality are not well separated



MS-DOS Layer Structure

‘ application program
resident system program ‘

MS-DOS device drivers

ROM BIOS device drivers




UNIX System Structure

UNIX — limited by hardware functionality, the original
UNIX operating system had limited structuring. The UNIX
OS consists of two separable parts.
= Systems programs
= The kernel
= Consists of everything below the system-call interface
and above the physical hardware

= Provides the file system, CPU scheduling, memory
management, and other operating-system functions; a
large number of functions for one level.



UNIX System Structure

(the users)

shells and commands
compilers and interpreters
system libraries

system-call interface to the kernel

signals terminal file system CPU scheduling

handling swapping block 1/0O page replacement

character 1/O system system demand paging
terminal drivers disk and tape drivers virtual memory

kernel interface to the hardware

terminal controllers device controllers memory controllers
terminals disks and tapes physical memory




Layered Approach

m The operating system is divided into a number of layers
(levels), each built on top of lower layers. The bottom
layer (layer 0), is the hardware; the highest (layer N) is
the user interface.

m With modularity, layers are selected such that each uses
functions (operations) and services of only lower-level
layers.



An Operating System Layer

new
operations

hidden
operations

existing
operations




0OS/2 Layer Structure

application

application

application

application -programming interface

API extension

subsystem

subsystem

subsystem

* memory management
* task dispatching
* device management

device driver
AT

device driver

—

device driver

device driver




Microkernel System Structure

Moves as much from the kernel into “user” space.
Communication takes place between user modules using
message passing.

Benefits:

- easlier to extend a microkernel via user-space
extensions.

- easier to port the operating system to new architectures
(less code to port)

- more reliable (less code is running in kernel mode)
- more secure (less to protect)
Windows NT: Win32, POSIX subsystem are user-level.



Virtual Machines

m A virtual machine is a program that acts as a hardware
simulator. Run N copies of this simulator, the one
physical machine becomes N virtual machines.

m Each machine can run:
= a single process under a simple OS
= all processes of a single user under a moderate OS
= a complex time-sharing OS (e.g. for debugging)
m “OS” has three parts:
= hardware simulator,

= resource (processor, memory) sharing between simulators,
= OS running inside each simulator.



Virtual Machines (Cont.)

m The resources of the physical computer are shared to
create the virtual machines.

= GPU scheduling can create the appearance that users have
their own processor.

= Spooling and a file system can provide virtual card readers
and virtual line printers.

= A normal user time-sharing terminal serves as the virtual
machine operator’s console.



System Models

processes

’

kernel

hardware

7

programming e
interface

processes

processes

processes

,

kernel

;

VM2

virtual machine
implementation

hardware

Non-virtual Machine

Virtual Machine




Advantages of Virtual Machines

m Complete protection of system resources since each
virtual machine is isolated from all other virtual machines.

m |deal for operating-systems research and development.
System development does not disrupt normal system
operation.



Disadvantage of Virtual Machines

m No direct sharing of resources.

m Difficult to implement. For efficiency, we run non-
privileged instruction on hardware. But then, what if...

= User program under simulator makes system call in real
user mode, triggers real interrupt

= Real OS, in real kernel mode, sets simulator to simulated
kernel mode, restarts simulator’s implementation of system
call in real user mode

= Simulator runs privileged instruction (e.g. I/O) in real user
mode, triggers real trap

= Real OS simulates I/O in real kernel mode, restarts
simulator in simulated kernel mode and real user mode.
m If this was hard to understand, imagine how hard it is to
code it correctly...



Java Virtual Machine

m Compiled Java programs are platform-neutral bytecodes
executed by a Java Virtual Machine (JVM).

m JVM consists of
- class loader
- class verifier (no pointers, no stack over/underflow)
- runtime interpreter

m Just-In-Time (JIT) compilers increase performance



Java Virtual Machine

java .class files

|

class loader

'

verifier

|

java interpreter

L

host system




VMWare

Commercial product
Simulates a basic PC

Persistent state of machine stored in two real files:
= NVRAM (non-volatile RAM)
= Disk contents (1 file per 1GB of simulated disk)
Simulated disk when simulator runs
= Discard changes (disk loaded in memory)
= Keep changes (real file was modified)

= Choose to commit/revert: database-like journal kept on disk,
can issue commit or abort

Different than SoftWindows: simulates Win32 API, not
generic hardware allowing any OS.



System Design Goals

m User goals — operating system should be convenient to
use, easy to learn, reliable, safe, and fast.

B System goals — operating system should be easy to
design, implement, and maintain, as well as flexible,
reliable, error-free, and efficient.



Mechanisms and Policies

m Mechanisms determine how to do something, policies
decide what will be done.

m The separation of policy from mechanism is a very
important principle, it allows maximum flexibility if policy
decisions are to be changed later.



System Implementation

Traditionally written in assembly language, operating
systems can now be written in higher-level languages.
Code written in a high-level language:

= can be written faster.

= is more compact.

= is easier to understand and debug.

An operating system is far easier to port (move to some
other hardware) if it is written in a high-level language.



System Generation (SYSGEN)

Operating systems are designed to run on any of a class
of machines; the system must be configured for each
specific computer site. (Think Windows/Linux installer.)

SYSGEN program obtains information concerning the
specific configuration of the hardware system.

Booting — starting a computer by loading the kernel.

Bootstrap program — code stored in ROM that is able to
locate the kernel, load it into memory, and start its
execution.



