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Process Management

B A process is a program in execution. A process needs
certain resources, including CPU time, memory, files, and
/O devices, to accomplish its task.

m The operating system is responsible for the following
activities in connection with process management.
= Process creation and deletion.
= Process suspension and resumption.
= Mechanisms for:
~| process synchronization
=/ process communication



Main-Memory Management

m Memory is a large array of words or bytes, each with its
own address. It is a repository of quickly accessible data
shared by the CPU and I/O devices.

m Main memory is a volatile storage device. It loses its
contents in the case of system failure.
m The operating system is responsible for the following
activities in connections with memory management:
= Keep track of which parts of memory are currently being
used and by whom.

= Decide which processes to load when memory space
becomes available.

= Allocate and deallocate memory space as needed.



File Management

m Afile is a collection of related information defined by its
creator. Commonly, files represent programs (both
source and object forms) and data.

m The operating system is responsible for the following
activities in connections with file management:
= File creation and deletion.
= File organization (directory creation and deletion).

= Support of primitives for manipulating files and directories
(read/write).

= Mapping files onto secondary storage.



I/O System Management

m The I/O system consists of:
= A buffer-caching and spooling system
= A general device-driver interface
= Drivers for specific hardware devices



Secondary-Storage Management

m Since main memory (primary storage) is volatile and too
small to accommodate all data and programs
permanently, the computer system must provide
secondary storage to back up main memory.

m Most modern computer systems use disks as the
principle on-line storage medium, for both programs and
data.

m The operating system is responsible for the following
activities in connection with disk management:
= Free space management

Storage allocation

= Reliability (RAID)

Disk scheduling
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Networking (Distributed Systems)

m A distributed system is a collection of processors that do
not share memory or a clock.

m Communication takes place using a protocol:

= FTP: examine secondary storage (list files, read contents)
and remotely alter it (add, delete files).

= HTTP: like FTP but low-setup overhead, ideal for quick
transfer of small content.

= POP/IMAP: like FTP but partial contents of mailbox file are
transferred and changed. POP has single mailbox file; IMAP
supports folder-oriented organization.



Protection System

Protection refers to a mechanism for controlling access
by programs, processes, or users to both system and
UsSer resources.

The protection mechanism must:

= allow user to specify the controls to be imposed (e.g. user
can set file access permissions).

= provide a means of enforcement (e.g. ensure user is
identified before an attempt is made to access a file).

« distinguish between authorized and unauthorized usage.
Security:
= security vs. protection: external vs. internal.

= covers user authentication, logging/auditing trails, encrypted
communications



Command-Interpreter System

m Many commands are given to the operating system by
control statement which deal with:
= process creation and management
/O handling
= secondary-storage management
main-memory management
file-system access
protection
networking
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Command-Interpreter System (Cont.)

m The program that reads and interprets control statements
(typed text) is called variously:
= command-line interpreter
= shell (in UNIX: csh, tcsh, bash)
Gets and executes the next command statement.

m Statement can be built-in command (MS-DOS) or a
regular program that calls system calls and formats result
for user (UNIX).

m Alternative is GUI: control defined via user actions (mouse
or joystick clicks, touch screen). Most such systems still
have command-line interpreter for administration (often a
security loophole, e.g. voting machine tampering).



Operating System Services

Program execution — system capability to load a program into
memory and to run it.

I/O operations — since user programs cannot execute 1/0O
operations directly, the operating system must provide some
means to perform 1/O.

File-system manipulation — program capability to read, write,
create, and delete files.

Communications — exchange of information between processes
executing either on the same computer or on different systems
tied together by a network. Implemented via shared memory or
message passing.

Error detection — ensure correct computing by detecting errors
in the CPU and memory hardware, in I/O devices, or in user
programs.



Additional Operating System Functions

Additional functions exist not for helping the user, but rather
for ensuring efficient system operations:

® Resource allocation — allocating resources to multiple users
or multiple jobs running at the same time.

® Accounting — keep track of and record which users use how
much and what kinds of computer resources for account
billing or for accumulating usage statistics.

® Protection — ensuring that all access to system resources is
controlled.



System Calls

m System calls provide the interface between a running
program and the operating system.
= @Generally available as assembly-language instructions.
= Languages defined to replace assembly language for
systems programming allow system calls to be made
directly (e.g., C, C++)
m Three general methods are used to pass parameters
between a running program and the operating system.
= Pass parameters in registers.
= Store the parameters in a table in memory, and the table
address is passed as a parameter in a register.

= Push (store) the parameters onto the stack by the program,
and pop off the stack by operating system.



Passing of Parameters As A Table
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Process Management: MS-DOS
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Process Management: UNIX
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Communication Models

m Communication may take place using either message
passing or shared memory.

process A process A

shared memory

process B process B

kernel kernel

Message Passing Shared Memory



System Programs

B System programs provide a convenient environment for
program development and execution. The can be divided
Into:

= File manipulation: Unix ‘cp’

= Status information: Unix ‘ps’

= File modification: Unix ‘cat’

= Programming language support: Unix ‘cc’

= Program loading and execution: Windows ‘start’
= CGommunications: Windows ‘ipconfig’

= Application programs: Windows ‘ie’

m Most users’ view of the operating system is defined by
system programs, not the actual system calls.



MS-DOS System Structure

m MS-DOS — written to provide the most functionality in the
least space

= Not divided into modules

= Although MS-DOS has some structure, its interfaces and
levels of functionality are not well separated



MS-DOS Layer Structure
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UNIX System Structure

UNIX — limited by hardware functionality, the original
UNIX operating system had limited structuring. The UNIX
OS consists of two separable parts.
= Systems programs
= The kernel
= Consists of everything below the system-call interface
and above the physical hardware

= Provides the file system, CPU scheduling, memory
management, and other operating-system functions; a
large number of functions for one level.



UNIX System Structure
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Layered Approach

m The operating system is divided into a number of layers
(levels), each built on top of lower layers. The bottom
layer (layer 0), is the hardware; the highest (layer N) is
the user interface.

m With modularity, layers are selected such that each uses
functions (operations) and services of only lower-level
layers.



An Operating System Layer
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0OS/2 Layer Structure
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Microkernel System Structure

Moves as much from the kernel into “user” space.
Communication takes place between user modules using
message passing.

Benefits:

- easlier to extend a microkernel via user-space
extensions.

- easier to port the operating system to new architectures
(less code to port)

- more reliable (less code is running in kernel mode)
- more secure (less to protect)
Windows NT: Win32, POSIX subsystem are user-level.



Virtual Machines

m A virtual machine is a program that acts as a hardware
simulator. Run N copies of this simulator, the one
physical machine becomes N virtual machines.

m Each machine can run:
= a single process under a simple OS
= all processes of a single user under a moderate OS
= a complex time-sharing OS (e.g. for debugging)
m “OS” has three parts:
= hardware simulator,

= resource (processor, memory) sharing between simulators,
= OS running inside each simulator.



Virtual Machines (Cont.)

m The resources of the physical computer are shared to
create the virtual machines.

= GPU scheduling can create the appearance that users have
their own processor.

= Spooling and a file system can provide virtual card readers
and virtual line printers.

= A normal user time-sharing terminal serves as the virtual
machine operator’s console.



System Models
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Advantages of Virtual Machines

m Complete protection of system resources since each
virtual machine is isolated from all other virtual machines.

m |deal for operating-systems research and development.
System development does not disrupt normal system
operation.



Disadvantage of Virtual Machines

m No direct sharing of resources.

m Difficult to implement. For efficiency, we run non-
privileged instruction on hardware. But then, what if...

= User program under simulator makes system call in real
user mode, triggers real interrupt

= Real OS, in real kernel mode, sets simulator to simulated
kernel mode, restarts simulator’s implementation of system
call in real user mode

= Simulator runs privileged instruction (e.g. I/O) in real user
mode, triggers real trap

= Real OS simulates I/O in real kernel mode, restarts
simulator in simulated kernel mode and real user mode.
m If this was hard to understand, imagine how hard it is to
code it correctly...



Java Virtual Machine

m Compiled Java programs are platform-neutral bytecodes
executed by a Java Virtual Machine (JVM).

m JVM consists of
- class loader
- class verifier (no pointers, no stack over/underflow)
- runtime interpreter

m Just-In-Time (JIT) compilers increase performance



Java Virtual Machine
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VMWare

Commercial product
Simulates a basic PC

Persistent state of machine stored in two real files:
= NVRAM (non-volatile RAM)
= Disk contents (1 file per 1GB of simulated disk)
Simulated disk when simulator runs
= Discard changes (disk loaded in memory)
= Keep changes (real file was modified)

= Choose to commit/revert: database-like journal kept on disk,
can issue commit or abort

Different than SoftWindows: simulates Win32 API, not
generic hardware allowing any OS.



System Design Goals

m User goals — operating system should be convenient to
use, easy to learn, reliable, safe, and fast.

B System goals — operating system should be easy to
design, implement, and maintain, as well as flexible,
reliable, error-free, and efficient.



Mechanisms and Policies

m Mechanisms determine how to do something, policies
decide what will be done.

m The separation of policy from mechanism is a very
important principle, it allows maximum flexibility if policy
decisions are to be changed later.



System Implementation

Traditionally written in assembly language, operating
systems can now be written in higher-level languages.
Code written in a high-level language:

= can be written faster.

= is more compact.

= is easier to understand and debug.

An operating system is far easier to port (move to some
other hardware) if it is written in a high-level language.



System Generation (SYSGEN)

Operating systems are designed to run on any of a class
of machines; the system must be configured for each
specific computer site. (Think Windows/Linux installer.)

SYSGEN program obtains information concerning the
specific configuration of the hardware system.

Booting — starting a computer by loading the kernel.

Bootstrap program — code stored in ROM that is able to
locate the kernel, load it into memory, and start its
execution.



