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ABSTRACT 

The main focus of this thesis is to solve the 2D strip-packing problem specifically for use in the 

garments industries of Bangladesh. Garments industry is one of the biggest export industries of 

Bangladesh. One of the routine works of all garments company is to cut shape of clothes from 

long strip of cloth. The current technique for placing the shapes and cutting are both done 

manually which is not only time consuming but also minimally optimized. We realized that this 

process of placing shapes can be automated. However the problem itself is classified as NP-

Hard problem. In this thesis we tried to solve the problem using Genetic Algorithm keeping the 

orientation of the shapes fixed. This requirement of keeping the orientation fixed is posed by the 

nature of the way clothes have to be cut out. In this research we surveyed most of the works 

that has been done to solve similar problems and developed our new algorithm which solves the 

garments industries’ problem specifically. We developed software that tests our new algorithm 

and presents the user with graphical output of the final placement of the shapes. Our software 

can also take several input parameters which are either software specific or Genetic Algorithm 

specific. 
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1.1   Introduction 

Cutting and packing problems arise in many fields and situation. For example a garment industry 

might need to cut shapes out of a long strip of fabric in an optimized fashion so that minimum 

amount of cloth is wasted. Unfortunately this class of problems, known as Bin-packing 

problems, is known to be NP-Hard[1] problems in computer science.  

 

Bin-packing problems can be classified in several categories, e.g. 1D bin-packing problems, 2D 

Strip-packing packing problems and 3D Bin-packing problems. In this thesis we have dealt with 

a 2D Strip-packing problem with arbitrary shapes. Most of the previous work dealt with packing 

rectangular shapes or some composition of rectangular shapes within a finite 2D space. 

Researchers have found some heuristics to find solutions for the bin packing problems, but 

some others have also used approximation algorithms like Genetic Algorithm[1] and Neural 

Networks[2] as an approach to solve these problems. 

 

1.2   Objective 

2D Strip-Packing problem is that a strip of 2D space is given with fixed width but variable 

length. A set of arbitrary polygon are also given which need to be fit in the 2D strip in such a 

way that minimum length is required. The objectives of this thesis are : 

 Study existing solutions, if there is any 

 Defining how shapes are to be represented. 

 Deciding on an efficient algorithm. 

1.3   Motivation 

Garments industry is one of the biggest export industries of Bangladesh. Lots of clothe shapes 

have to be cut out of long sheets of cloth but the whole process is done manually and hence 

minimally optimized. Clothes are wasted in the process of this manual placement of shapes on 

long cloth strips. It can be easily speculated that even a save of 1 inch while cutting shapes out 

of cloth strip can save hundreds of thousands of worth. Placing arbitrary shapes on cloth strip 

and then cutting them my means of automated machine such that minimum length of cloth is 

required to fit the given number of shapes easily translates into a Strip-Packing problem. 

Whatever algorithm is developed, no one can claim about absolute optimality due to the NP-
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Hard nature of the problem, but even near optimal solution to this problem has been speculated 

to save hundreds of thousands of worth on daily basis. 

 

1.4   Problem Formulation 

The problem consists of the following input: 

 A rectangular bin with fixed width w and a variable height h which can be stretched 

infinitely. 

 A set of arbitrary shapes {S1, S2 …. Sn}. 

And we are to fit the arbitrary shapes in such a way that the following conditions are met:[6][7] 

 No shape has any of its part outside the bound of the bin. 

 No two shapes overlap 

 All the shapes are packed in such a way that the height required h for the bin is 

minimized. 

The final solution may have shapes with orientation different from their original input however 

the basic dimension must remain the same, i.e. the shape cannot be stretched, sheared or 

distorted by any means but only rotated around some fixed point. 

1.5   Optimality of the solution 

Being an NP-Hard problem there is no way to claim that a particular solution is the most 

optimal which poses as one of the major constraints in evaluating an instance of solution. 

However, the “goodness” of the solution can be compared between different instances of 

solution. 

 

1.6   Genetic Algorithm 

Genetic Algorithm (GA) is a pseudo-random search technique inspired from natural evolution 

theory. The parallel-search nature of GA and its ability to avoid local minima in the search space 

combined with the fact that the solution relies on proper combination of several parameters that 

describes the position and orientation of the arbitrary shapes makes it a good candidate to 

generate approximate results for Bin-packing problems. 
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In this thesis we fit a given number of arbitrary shapes within a rectangular bin of fixed width 

and infinite height and we aim to minimize the height required. We chose to use GA as our tool 

to address the problem. 

 

1.7   Methodology of the thesis 

To do this thesis a structural procedures will be followed. The step by step procedure is 

mentioned below 

1.7.1   Literature survey 

Not many books are available that has solutions for such problem hence most of the literature 

to be read will be gathered from internet. 

1.7.2   Deciding on a algorithm 

After enough literature survey, we will decide/devise an efficient algorithm that suits our need as 

well as solve our specific problem. 

1.7.3   Finding out bottlenecks and decide on optimization techniques 

We will find out the major bottlenecks of the algorithm and try to develop highly optimized 

modules that will be used by our new algorithms. 

1.7.4   Compilation of the necessary tools and materials 

Due to the graphical nature of the problem the final result must be presented graphically to the 

user hence a good GUI must be used. For that purpose we will decide on which GUI libraries 

to use to develop the simulation software. As well as we will decide which platform to use to 

develop the software. 

1.7.5   Implement the algorithm and develop the softare 

In this phase the actual software will be develop which will be as flexible as taking all possible 

inputs and parameters from the user through a good looking UI. 

1.7.6   Performance evaluation 

Finally the output of the new algorithm will be analyzed  and the effect of various parameter will 

be studied. 
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1.8   Conclusion 

In this report we will first define and formulate the problem at hand. We will then explore what 

has been done so far to address such problems and other similar or related problems. Next we 

present our new approach with detailed description of Genetic Algorithms. We then present 

several result outputs and interpretation of each output generated. While interpreting we will try 

to show how the results are dependant on each of the input parameters of problem. 
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2.1   Introduction 

Nesting problem is interesting to many industries like garment, paper, ship building, and sheet 

metal industries since small improvements of the layout can result in a large saving of material. 

In some cases both the pieces and the containing region are rectangular, and a considerable 

mount of effective solutions have been proposed for rectangular nesting problems in the past 

decades. However, there are also many other cases where either the pieces or the containing 

region is irregular in shape, due to the geometrical complexity introduced by irregular shapes, 

such problems are not studied as well as rectangular nesting problem. Today even a purely 

automatic algorithm is still difficult to outperform an experienced operator, hence irregular 

nesting problem is still an attractive research topic. 

 
2.2   Rectangular Bounding-Box Approach 

In this approach a set of rectangular boxes are fit inside the strip. In case of arbitrary polygon, 

the bounding boxes are found out and used in the algorithm. 

It is quite discernible that this approach for arbitrary polygon is very naïve and inefficient as too 

mach space would be wasted. 

2.3   Positional and Rotational Encoding of Polygon Placement Method, using GA [5] 

In this method, the 2D coordinates and the orientation angle is encoded in the chromosome of 

Genetic Algorithm. The evaluation of a particular chromosome is calculated using two basic 

parameters, awards are given for better fit and penalties are given for overlap and other 

violations. The genetic algorithm then converges the population with more awards. 

Though the algorithm is simple but the final result may have overlaps. 

2.4   NFP Method [4] 

The concept of NFP (No Fit Polygon) was proposed by Art [7], Adamowcz and Albano [8]. No 

Fit Polygon (NFP) is the fundamental geometric tool for 2D irregular nesting problems. It gives 

the set of non-overlapping placements for polygons. NFP can be defined as below: 

Given two polygons A and B, A is fixed, and B slides around A without overlapping and B 

keeps not rotating. During this tracing movement, the locus of the reference point on B forms a 

closed path denoted as NFPAB  
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Figure 2.1:NFP (No Fit Polygon) 

The relevant property of NFP regarding the interaction between A and B is as follows: if B is 

positioned with its reference point on the boundary of NFP then A and B will touch; if B is 

positioned with its reference point inside the boundary of NFP then the A and B will overlap. 

Thus, the boundary of NFP represents all touching positions. In the nesting procedure, pieces 

are arranged in pattern of touching each other for saving materials, therefore, based on the 

NFP, the problem of nesting one piece can be simplified to select the optimal position on 

NFP. 

 

The basic approach of this algorithm is to find an optimal position in the NFP. 

 

However, existing NFP algorithms have some common drawbacks, such as high time-

complexity and difficult to implement and not robust enough. The lowest average 

complexity of the existing NFP algorithms is O(lmn) (l presents the number of edges of NFP, 

and m and n present the numbers of edges of A and B respectively). 

 

2.5   Gravity Center NFP [4] 

The basic NFP based algorithm is further enhanced with Gravity Center NFP. In this approach 

the reference of the given polygon is taken as the center of gravity of the polygon instead of any 

arbitrary vertex. This gives better results compared to the traditional NFP algorithm. In this 

approach the polygon is also rotated in a discrete fashion, i.e. 360o is divided into n parts and 

then the polygon is rotated and for each orientation an NFP is calculated. Later the NFP having 

the lowest gravity center is chosen and the polygon is placed. 
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Figure 2.2: Gravity Center NFP 

This method suffers from the same problem of time complexity and computational complexity 

as the traditional NFP method. 

2.6   Conclusion 

The problem that we have in our hand is much simpler in the sense that the orientation of the 

polygon remains static. Hence the time and computational complexity that the above methods 

suffer can be easily avoided and a much simpler technique could be employed to solve the 

problem. This led us to design and implement a new algorithm which is much simpler and 

produces good results much quicker than the above methods. 

The following section discusses shortly about Genetic Algorithm which will be extensively used 

in our new algorithm. The genetic coding has been designed in such a way that even a randomly 

generated population of polygon arrangement will never have overlaps. 
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3.1   Genetic Algorithm (GA) 

Genetic algorithm (GA) is based on the natural evolution theory. GA begins with a set of k 

randomly generated states, called population. Each state, or individual, is represented as a 

string over a finite alphabet, most commonly a string of 0s and 1s. Each state must be one 

candidate solution or an acceptable configuration of the problem which may or may not be 

optimal. For example, in 8-queens-problem, which asks to arrange 8 chess queens on a chess 

board in such a way that no queen can attack another queen, a state must specify positions of 8 

queens. A common representation of the state can be a string of 8 numbers. Each number will 

be associated with a queen in one particular column of the chess board, and the number it self 

will represent the row that queen belongs to. This representation is illustrated in Figure 3.1 

below. 8 such numbers can fully represent the positions of all 8 queens on the chess board. 

Randomly generating one such state may have queens attacking another queen. 

 

Figure 3.1: 8-Queen Problem. String representation for this 
configuration will be [ 1,5,8,4,2,6,1,3 ] 

3.2   Fitness 

Each state is rated by the evaluation function called fitness function. A fitness function should 

return higher values for better states, so, for the 8-queens problem we use the number of non-

attacking pairs of queens, which has a value of 28 for a solution.  

The population is allowed to mate within it self and produce next generation, very much like 

natural processes. In this particular variant of the genetic algorithm, the probability of being 

chosen for reproducing is directly proportional to the fitness score. 

3.3   Cross-over 

For each pair to be mated a crossover point is randomly chosen from the positions in the 

string, e.g. in Figure 3.2 the crossover point is selected after the 3rd number.  
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Figure 3.2: Mating process 

Offspring are created crossing over the parent strings at the crossover point. For example, in 

Figure 3.2, the first child got its first 3 numbers from 1st parent and the rest numbers from the 

2nd parent. 

3.4   Mutation 

Finally offspring are subjected to random mutation with very small independent probability. In 

our example in Figure 3.2, the 1st child got mutated in its 5th number while the 2nd child 

remained unchanged. Mutation enables the algorithm to pop out of local minima in the search 

space. 

Genetic algorithm combines an uphill tendency with random exploration and exchange of 

information among parallel search threads. Genetic algorithm is suitable in places where some 

part of string representation, called schema, may contribute to the optimal solution. 

2 4 7 4 8 5 5 2 

3 2 7 5 2 4 1 1 

2 4 7 5 2 4 1 1 

3 2 7 4 8 5 5 2 

2 4 7 5 1 4 1 1 

3 2 7 4 8 5 5 2 

Parents Two possible 
offspring 

First child got 
mutated 
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Figure 3.3: Genetic Algorithm 

3.5   Conclusion 

The problem being an NP-Hard problem, the optimality of the any solution cannot be claimed 

to the best, and there is no deterministic algorithm to solve it. Genetic algorithm has been 

chosen to solve the problem for its inherent feature of parallel search and the ability to get out 

of local minima/maxima though the process of mutation. Genetic algorithm is also chosen 

because in this problem because a good schema of the chromosome can actually lead to many 

offspring of good fitness. 

 

 

 

 

 

function GENETIC-ALGORITHM(population,FITNESS-FN) returns an 

individual 

inputs: population, a set of individuals 

FITNESS-FN, a function that measures the fitness of an individual 

 

repeat 

new_population ← empty set 

loop for i from 1 to SIZE( population ) do 

x ← RANDOM-SELECTION( population,FITNESS-FN) 

y ← RANDOM-SELECTION( population,FITNESS-FN) 

child ← REPRODUCE(x,y) 

if ( small random probability) then child ← MUTATE(child) 

add child to new_population 

population ← new_population 

until some individual is fit enough , or enough time has elapsed 

return the best individual in population, according to FITNESS-FN 

 

 

function REPRODUCE(x,y) returns an individual 

inputs: x,y, parent individuals 

 

n ← LENGTH(x) 

c ← random number from 1 to n 

return APPEND( SUBSTRING(x,1,c),SUBSTRING(y,c+1,n)) 
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4.1   Developed Algorithm 

The approach that has been taken to solve the given Strip-Packing problem was based on 

Genetic Algorithm. The first issue was to represent the arbitrary shapes into some geometric 

form. 

4.2   Object definition 

Each arbitrary shape was represented by an n-sided polygon. Each side of the polygon was a 

straight line. Curves and other smoother shapes were approximated by sampling a curve at many 

points and joining them with small lines. Therefore an arbitrary shape was represented by 

 A set of points P={P0,P1 … Pn} 

 A set of lines L={L0,L1 … Ln} 

Where n+1 is the order of polygon. The polygon could be of both convex1 and non-convex1 

type. Each line in the L, is directed and is described by a vector. Every polygon was oriented in 

anti-clockwise direction as shown below: 

 

Figure 4.1: A Polygon 

                                                 
1 A polygon is said to be convex if for every point inside the polygon a line is drawn in any direction it only intersects the polygon 

itself at one single point. Otherwise the polygon is said to be non-convex. 

P0 

P1 

P5 

P4 

P3 

P2 

L0 

L1 
L2 

L3 

L4 L5 
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4.3   Definitions 

4.3.1   Front-Facing Lines: 

Front-Facing lines are defined to be those lines which, looking from bottom appears to 

have some component of it point towards right, as shown below: 

 

Figure 4.2: Examples of Front Facing Lines 

Mathematically, a vector v is said to be Front-Facing if the z ordinate of  

)0,1,0( vr  

r is positive, i.e r.z > 0. Informally if v is “cross-product-ed” with Y-Axis and if the z 

ordinate of the resultant vector is positive, we defined that vector v as Front-Facing 

vector. 

4.3.2   Back-Facing Line: 

This is just the opposite of Front-Facing line. Looking from bottom if any component 

of a line appears to point towards left then we define that as Back-Facing line. 

 

Figure 4.3: Examples of Back-Facing lines 

If the mathematical test for the Front-Facing fails then the line must be a Back-Facing 

line. 
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4.3.3   Incoming-Line And Outgoing-Line of a Point 

In a polygon a point has two lines associated with it. One is Incoming-Line and the 

other one is Outgoing-Line. Incoming-Line is the one that points towards the point, 

while Outgoing-Line is the line that points away from the point. 

 

Figure 4.4: Incoming-line and Outgoing-line 

4.3.4   Start-Point and End-Point 

Each line has two points associated with, Start-Point and End-Point. Start-Point is the 

point that the vector v of the line starts from and End-Point is the point the vector v 

ends at. 

 

Figure 4.5: Start-point and End-point 

4.3.5   Apex-Point 

A point is said to be Apex-Point if its Incoming-Line and Outgoing-Lines are oriented 

in such a way that looking from bottom the point seems to be “pointing” downwards, as 

shown below: 

 

Figure 4.6: Apex Point 

Mathematically, a point P is said to be an Apex-Point if the following condition is true 

 ))0,1,0(())0,1,0(  LineP.OutgoingLineP.Incoming(  

End-point 

Start-point 

Incoming-Line 

Outgoing-Line 
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4.3.6   Crevice-Point 

A point is said to be Crevice-Point if its Incoming-Line and Outgoing-Lines are oriented 

in such a way that looking from bottom the point seems to be “pointing” upward, as 

shown below: 

 

Figure 4.7: Crevice-Point 

Mathematically, if the condition of the Apex-Point fails, then the point must be a crevice 

point. 

4.3.7   Edge-Point 

Edge point are those points whose either Incoming-Line or the Out-Going line is a 

Back-Facing line while the other one is a Front-Facing line. For example: 

 

Figure 4.8: Edge Points 

4.4   Assumption 

For our algorithm we ignored orientation, i.e. the orientation of the polygon will not be changed 

and the same orientation will be used all through-out the algorithm and simulation process. This 

types of requirement as usually posed in garments industry where cloth have a particular type of 

“run” and all clothe pattern to be cut out must also align themselves in certain orientation to 

match with that run. However, polygons can be translated (moved). 

 

Edge Points 
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4.5   Mapping to GA 

The first and the most important step in solving a problem using GA is to design/encode the 

string representation (chromosome2). The given strip packing problem is such that there can be 

no overlap between two polygons whatsoever. This restriction requires the chromosome to be 

designed in such ways that even random generation of chromosomes guarantees that there will 

not be any overlap between polygons. 

4.5.1   Chromosome representation 

Keeping that in mind, we designed our chromosome such that it has n number of genes (We 

define chromosome as the string/array representation of a single state in GA. We also define 

each basic element of that string/array as gene) where n is the number of total polygon to be fit 

in the strip. Each gene has two information: “Sequence-Number” and “X-Position” and 

associated with a particular polygon, which will be discussed shortly. 

 

Figure 4.9: An example chromosome with 3 genes for 3 polygons. 

4.5.2   Evaluating fitness value 

The fitness of a particular chromosome is determined by traversing through all its genes 

according to the Sequence-Number (which has a range of 0 to n-1) in ascending order, i.e. the 

gene having the lowest Sequence-Number will be visited first and the highest Sequence-Number 

will be visited last. For each gene visited, the corresponding polygon is allowed to drop freely 

from a height which is the atleast equal to the worst possible height (hw) that could be generated 

using all the polygon. This worst possible height can be found out once and very easily by 

stacking all the polygon’s bounding box one over another and taking the total height (hw). With 

y-ordinate set to hw, the polygon is dropped with x-ordinate set to X-Position information 

stored in the gene. However, before dropping the polygon, the gene is checked if, with the given 

X-Position, the polygon bound stays within the strip. In case the polygon bound doesn’t remain 

within the strip, the X-Position information in the gene is modified so as to bring the polygon 

bound within the strip. The process is illustrated in Figure 4.10.  

                                                 
 

Seq-No. X-Pos. Seq-No. X-Pos. Seq-No. X-Pos. 

One Gene 
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As the polygon is dropped, collision detection tests are 

 

Figure 4.10: Demonstrating the fitness evaluation process  

 

performed to find if the polygon in question collides with polygons that had already been 

dropped. If it collides, the collision points are calculated and the maximum distance the polygon 

can move downward is also calculated and the polygon is allowed to fall that much distance 

downward. This causes all the polygons to stack at the bottom of the strip according to the 

information stored in all the genes and hence the chromosome. The maximum height required 

(h) for all the polygons is noted and then the fitness value is calculated as follows 

 hhf w   .............................................................................................................................. (4.1)  

More the value of fitness f is, the lesser is the height (h) required to fit all the polygons and thus 

represents a better solution. 

4.5.3   Mating 

Once the fitness value of all the chromosomes are found out, the population is allowed to mate 

according to the standard GA algorithm, which was discussed earlier. However, instead of 

a) The X-Position of the polygon is such that it 
made the polygon hang outside the strip bound.  

b) The X-Position of the polygon is modified  to 
bring the polygon bound inside the strip bound.. 

c) Finally the polygon is allowed to drop freely and 
collision detection tests are performed. 

hw hw hw h 

f 

a b
) 

c
) 

X-Position 

Modified 
X-Position 
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replacing the current generation with the new generation, we added the new generation of 

chromosome to the old generation of chromosomes, thus increasing the population size. In the 

process, we “killed” chromosome which had fitness value under a certain threshold. This 

“killing” process kept the population size under some sort of check and allowed only the better 

chromosomes to live through generations. 

After running the above process for a certain number of generations, we would stop the 

algorithm and output the best chromosome found so far. 

4.6   Conclusion 

Due to the inherent quality of GA to search for a solution in parallel fashion, combined with the 

ability to pop out of local minima/maxima makes it a very suitable tool to generate a near 

optimal solution. However, the biggest challenge of solving this particular problem with the 

discussed scheme, the collision detection routine becomes the biggest bottleneck as far run-time 

is concerned. Hence the collision detection routines need to be optimized. 
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5.1   Simulation Framework 

Our simulation framework is basically a stand-alone software that was built with a GUI support. 

There are basically 3 modules, polygon input module, output module and GA-parameter input 

module. 

5.1.1   Our simulation framework consists of the following parameters 

5.1.1.1   n number of arbitrary polygons. 

Polygons are stored in simple text files which are read in by the simulation program. 

5.1.1.2   Initial Population, k 

Initially k number of chromosomes/individuals are created randomly. These k 

chromosomes act as the first generation. 

5.1.1.3   Number of Generations 

This is basically the number of iterations or generations to be simulated for. Since the 

problem is a NP-Hard problem, there is no particular sentinel condition so we need to 

set this parameter manually. 

5.1.1.4   Mutation probability  such that 0 ≤  ≤ 1 

This is the probability that determines if a new born chromosome is mutated in some 

gene location. If mutation has to be performed, a gene location is selected in random 

and then either of the “Sequence-Number” or the “X-Pos” would be mutated, i.e. 

changed randomly. Changing “X-Pos” might render the polygon invalid because some 

part of the polygon might hang outside the strip-bound. So after every mutation process, 

the chromosome needs to be validated. Usually  is set to very low probability and in 

our simulation framework, we used a default value of 0.1. 

5.1.1.5   Cull-Threshold  such that 0 ≤  ≤ 1 

This is the parameter that decides if a chromosome should be “killed” or kept alive 

through generations. This is a normalized parameter and for every chromosome the 

fitness value is also normalized between worst chromosome’s fitness value and the best 

chromosome’s fitness value. For every chromosome, the normalized fitness NF is 

calculated using the following formula: 

fitnessosomeWorstChromfitnesssomeBestChromo

fitnessosomeWorstChromfitnessChromosome
NF

..

..




  



 24 

  

if NF <  then the chromosome is “killed.” 

 

5.2   Simulation software 

The simulation software provides the user to input and change all the parameters that were 

discussed in the previous section. The user can run the algorithm and watch how the average 

fitness value of the population changes as well the plot of the best chromosome found so far. 

The software also plots the population size. The user may also stop the simulation anytime 

he/she feels like and see the output of the best result found so far. 

 

Figure 5.1: Screenshot of the simulation software 

The software takes polygon data as input in form of files which contains polygon vertices 

information in textual format. It then provides the user to change several GA parameters like 

initial population, mutation probability, number of generations etc. 

The algorithm is run in a different thread so that the user interface can be interacted with while 

the algorithm is running and user can cancel the operation at any time. The user can view the 

best result produced so far graphically. 
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Since the software demanded graphical representation of the final result as well as ability to 

graphically take input from user, a good GUI has been designed. For this GUI to be developed 

a well renowned cross-platform GUI SDK has been used called wxWidget[10] which has built 

in features for OpenGL. 

The basic software operation can be summarized as follows. 

 

Figure 5.2: Software Data Flow 
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6.1   Introduction 

Since we relaxed ourselves from rotating the polygons, their orientation becomes static. As 

polygons would be dropped from the top of the strip with fixed/static orientation we can pre-

calculate lots of collision data beforehand while loading the polygons. 

6.2   Optimization 

It can be noted that when a polygon is to be dropped from the top of the trip, only the 

points/vertices of the front-facing lines can collide with the back-facing lines of the polygons 

that had already been dropped. On the other hand, only the points/vertices of the back-facing 

lines of the polygon already dropped in the strip can collide with the front facing lines of the 

polygon to be dropped. This prunes out half of the vertices and lines to be tested for collision 

on average and reduces the collision test to 1/4. The fact is demonstrated below. 

 

Figure 6.1: Polygon Hit 

In the above Figure 6.1, the bold lines of the top polygon are the front facing lines. The stripped 

lines of the bottom polygon are the back-facing lines. All the points that belongs to the front-

facing lines of the top polygon are “collidable” points with the back-facing lines of the bottom 

polygon. However, points marked with “stars” are crevice points with respect to the other 

polygon. Crevice points can never contribute to collision, hence they are pruned. Points marked 

with “box” are positioned in such way that they cannot contribute to any collision because the 

polygon it belongs to has at least one line that blocks the point from colliding. Hence, these 

points are also pruned. Lines that have both its point marked with “box” are pruned because 

such line cannot contribute to a collision. 
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All the points marked with “circles” are front-collidable points of the top polygon which are 

tested for collision with all the stripped lines (back-facing lines) of the bottom polygon. When 

collision test is performed, an imaginary line is produced from the point to the given line and 

tested if the following are true  

 If the imaginary line intersects with the other line 

 If the y-intercept of the intersection is lower or equal to the y-ordinate of the point. 

If the point is found to collide with the line, the distance d between the point and the 

intersection point is calculated. The same procedure is carried for all the back-facing points of 

the bottom polygon with all the front-facing lines of the top. The minimum of all d is then used 

to translate the top polygon downward. 

All the back-facing lines, front-facing lines, front-collidable-points, back-collidable-points are 

pre-calculated once the polygons are loaded and the results are simply used while finding the 

fitness during GA. This roughly reduces the collision detection calculation for each pair of 

polygon to almost ¼. 

Two more optimization operations are also performed. 

6.2.1   Potential Collidable Polygons 

Before a polygon is dropped from the top, the lower end of the bounding box of the polygon is 

extended till the bottom of the containing strip and then the resultant bounding box is tested for 

overlap with all the bounding boxes of the polygons which had already been dropped. Only 

those polygons that overlap with the extended bounding box may collide with the polygon 

about to be dropped, and this set of polygons is termed as “Potential Collidable Polygons” 

(PCP). This allows many polygons not to be tested for collision at all thus increasing 

performance. 

6.2.2   Height Pruning 

Within the “PCP” if a collision is detected, and after translating the polygon, about to be 

dropped, its y-ordinate of the lower corner of the bounding box is saved. When another 

polygon of PCP has to be tested; if its y-ordinate of the top corner of the bounding box is less 

than the y-ordinate already saved then the polygon is not tested at all. This prunes away all the 
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polygons that are far below in the stack of dropped polygon, thus increasing performance even 

further. 

6.3   Performance 

Total number of collision test performed to run GA for a certain number of generations is taken 

as a performance metric. Collision detection routine is the heat of finding the fitness value of a 

given chromosome. Due the mathematical complexity of the collision detection routine the 

overall performance of the simulation depends largely on the performance of the collision 

detection routine. However, since the problem is a NP-Hard problem combined with the fact 

that GA is used it is not guaranteed that a “good” solution will be found within the given 

number of generations. 

Generation 

Mean 
Collision 

Test x 1000 

Theoretical total 
collision test x 

1000 

Ratio 
(Theoretical 

Collision/Actual 
Collision) 

20 9805.55 259160 26.42992999 

30 14120.736 388740 27.5297265 

40 18120.414 518320 28.60420297 

50 22285.156 647900 29.07316422 

60 25974.20667 777480 29.93277177 

70 29731.31433 907060 30.50857388 

80 32989.97533 1036640 31.42287891 

90 36492.47967 1166220 31.95781735 

100 37793.90467 1295800 34.28595197 
Table 1: Performance Sheet 
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Figure 6.2: Performance Curve 
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The relationship between no. of generation and total number of collision test is fairly linear. 

The “Theoretical” number of collision test is the number of collision test we would need to 

perform if there weren’t any optimization. Table 1 tells that the optimization that we applied to 

solve the problem reduced the execution time by almost 30 times. Moreover this improvement 

over “Theoretical” number seems to be getting better as the number of generation is increasing. 

 

6.4   Conclusion 

Optimization in the collision detection algorithm is very important as it happens to the major 

bottleneck of the whole system. Table 1 clearly shows the almost 30 times less operations are 

performed due the optimization performed. 
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7.1   Introduction 

The current system has several input parameters, they are as follows: 

 Initial Population Size 

 Number of Generations 

 Mutation Probability 

 Set of Polygons 

In this section we will study the effect of various parameters on the output of the algorithm. 

While studying one parameter we will keep other parameters constant and observe the output. 

For all the experiment conducted below, 7 polygons were used with a total vertex count of 191.  

Following are the polygons that were used in the experiment. 

 

Figure 7.1: Polygons used in experiment 
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7.2   Effect of mutation-probability 

This experiment was conducted to test the effect of mutation probability on the final output. 

Number of generations was set to 100, while initial population size was set to 1000 for this 

experiment. 
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Figure 7.2: Mutation probability Vs Average fitness 
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Figure 7.3: Mutation Probability Vs Average Best Fitness 
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The mutation probability was changed and the corresponding average fitness of the population 

was observed. 

7.2.1   Interpretation 

Mutation was introduced in Genetic Algorithm to let GA pop out of local minima and maxima. 

However, this mutation probability needs to be set to very small value. As mutation probability 

increases, more individual get mutated and the algorithm converges to “blind” random search. 

As the algorithm becomes more “blindly” random, the average fitness value decreases. 

However, setting the mutation probability to too low will make the algorithm unable to pop out 

of local minima or maxima. This also makes the average fitness of the population go low. In the 

experiment it can be seen that mutation probability of around ~0.2 produces the best result. 

Although Figure 7.3 shows that mutation probability of around ~0.5 gives the best result but 

this might have happened due to shortage of data in our test cases. Usually the better picture is 

grasped in the average fitness curve. 

7.3   Effect of Number of Generation 

This experiment was conducted with the mutation probability set to 0.2 and the initial 

population set to 1000. The number of generations was increased and each time the average 

fitness of the population as well as the best fitness was observed.  
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Figure 7.4: No. of Generations Vs Average fit of population 
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Figure 7.5: No. of generation Vs Average Best Fit 

7.3.1   Interpretation 

It can be noted that as the number of generation is increased the average fitness of the 

population increases. This is explained by the fact that mutation probability is set to 0.2 (low) 

and since good individual has the greater probability to mate, the average fitness of the 

population approaches the best fitness. 

However, increasing the number of generations doesn’t monotonically increase the fitness of the 

best individual found so far. This can be explained by the fact that once a good individual is 

found, it becomes extremely hard to beat that individual any by the grace of GA we happened to 

find the good solutions by 100 generations. 
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7.4   Effect of Initial Population Size 

This experiment was conducted to test the effect of initial population size on the final result. For 

this experiment, the mutation probability was set to 0.2, and number of generation was set to 

100. 
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Figure 7.6: Initial population size Vs Average Best Fitness 
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Figure 7.7: No. of initial population size Vs Average fitness of the 
population 

7.4.1   Interpretation 

The role of initial population size is very mysterious. The Figure 7.7: No. of initial population 

size Vs Average fitness of the population shows that the final average fitness value behaves 

erratically as the initial population size increases. However Figure 7.6: Initial population size Vs 

Average Best Fitness curve tells us that as the initial population size increases the final best 

chromosome also gets better however too much initial population size does not help much. 

Still it is recommendable that the initial population size is taken big enough so as to increase the 

probability of having many good chromosomes. 

7.5   Conclusion 

The experiments gave us some light on how to adjust parameters while running the GA 

algorithm. It has been shown that too big mutation probability may make the algorithm 

converge to random search and thus reduce the performance. The number of initial population 

size and number of generation is related to the number of polygons fed into the system. The 

more polygon is fed it is recommendable to increase both these parameters to allow the GA to 

try out more combinations of polygon placements. 
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8.1   Conclusion 

This thesis proposed a very simple algorithm to solve the specific problem of garments industry. 

In the garments industry clothes shapes are needed to be cut out of long running strip of cloth 

but the orientation of the shapes need not to be changed. This is because every cloth has a 

particular “run” and when cloth shapes are cut its orientation has to conform to that run.  

 

There are many algorithms which solves the problem of packing arbitrary shapes. However, the 

orientation posed a big problem and introduced both run-time and computational complexity 

which we could easily avoid in our thesis. 

 

We first surveyed all the available related algorithms; there are only a few of them. Then we first 

defined and formulated the problem at hand. The nature of the problem made us chose Genetic 

Algorithm as the major tool to solve the problem. We presented our new approach with detailed 

description of Genetic Algorithms. We then presented several result outputs and interpretation 

of each output generated. While interpreting we tried to show how the results are dependant on 

each of the input parameters of problem. We also showed all the possible areas where we 

optimized the algorithm. 

 

We hope we have been able to propose a new and good approach, based wholly on Genetic 

Algorithm, to find out a near-optimal solution for packing a set of arbitrary polygon with fixed 

orientation in a strip with an aim to minimize the total height required.  

 

We also showed how various GA parameters and other parameters can be find tuned to 

generate much better results. 
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