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ABSTRACT
Interacting with biological systems via experiments is impor-
tant for academia, industry, and education, but access barri-
ers exist due to training, costs, safety, logistics, and spatial
separation. High-throughput equipment combined with web
streaming could enable interactive biology experiments on-
line, but no such platform currently exists. We present a cloud
experimentation architecture (paralleling cloud computation),
which is optimized for a class of domain-specific equipments
(biotic processing units - BPU) to share and execute many
experiments in parallel remotely and interactively at all time.
We implemented an instance of this architecture that enables
chemotactic experiments with a slime mold Physarum Poly-
cephelum. A user study in the blended teaching and research
setting of a graduate-level biophysics class demonstrated that
this platform lowers the access barrier for non-biologists, en-
ables discovery, and facilitates learning analytics. This archi-
tecture is flexible for integration with various biological spec-
imens and equipments to facilitate scalable interactive online
education, collaborations, research, and citizen science.
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INTRODUCTION AND MOTIVATION
Interacting with biological systems via experiments is im-
portant for academia, industry, and education, but many ac-
cess barriers exist that are related to training requirements,
cost, safety and logistics. Consider, for example, a compu-
tational scientist lacking the hands-on wet lab training to test
her own hypotheses experimentally, in which case the final
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data is of primary focus while the actual act of performing
the experiment is merely logistical. Similarly, access barri-
ers arise in life-science education where traditional teaching
labs are too costly or time consuming [30], or where online
courses [19] do not include lab sections [15, 48]. On the
other hand, citizen-science and crowd-sourcing projects have
demonstrated how non-scientists can make relevant scientific
contributions [18, 41], especially when users can design ex-
periments that are centrally executed in batch by a techni-
cian [32]. Hence, enabling many more people to directly
interact with microbiology in various contexts by designing
and executing biology experiments while abstracting away
the skills required for their actual execution would be very
powerful.

In this paper we introduce the concept of interactive cloud
experimentation for biology, which enables multiple users to
execute live biology experiments over the Internet by effi-
ciently sharing the necessary resources (Fig. 1) seamlessly.
This abstracts away the complex logistics of experimentation
and allows users to rather focus on the data analytics, which
enables a broader interdisciplinary participation in life- sci-
ence research and education. The notion is similar to the
well-established framework of cloud computing. Ongoing
advances in life-science technology [31, 37, 44, 49] are con-
tinuously pushing the boundaries of high-throughput exper-
imental technologies with the required automation and par-
allelization capabilities but they are rarely designed to be
accessed remotely and shared across multiple users concur-
rently. Our proposed cloud experimentation aims to enable
high-throughput technologies to be shared across many users
over the Internet concurrently while allowing iterative inter-
actions, i.e. a user will be able to make changes to her ex-
periments based on the current state of the investigation. This
strategy is also critically distinct from previous remote exper-
imentation efforts in the academia [25, 28, 34], which were
primarily designed for real-time feedback control of one in-
strument by a single user. We are not aware of any fully au-
tomated cloud or remote labs for biology, although various
educational remote labs exist in other science and engineer-
ing disciplines [9, 22, 26, 27]. Few “cloud lab” companies
have emerged recently that execute biology experiments in
a centralized location [5, 1, 4]. As of the writing of this
manuscript, none enables users to run experiments online in-
teractively (mailing DNA samples to be cloned and mailed
back has a very different quality of interactivity than what
we provide). But according to these companies’ website in-
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Figure 1. We developed a general architecture for a cloud experimentation system that allows multiple users to optimally share high-throughput
equipment online to run many interactive biological experiments in parallel and to collaborate. Experiments are carried out in wells and can be
shared by multiple users. Many such experiments are executed in parallel on a individual Biotic Processing Units (BPUs), multiples of which operate
autonomously and synchronously with two clock cycles. One clock polls the central server for a set of currently scheduled instructions that are
multiplexed from several users; the BPU then compiles and executes these instructions. On the other clock cycle, the BPU takes experimental readings
(for example, imaging a well or measuring the current temperature) and demultiplexes these data for different users before sending them back to
the central database (state data) and storage server (bulk data). Priority is given to one clock when both cycles overlap, based on the specific type
of experimentation. Users access the system over the Internet without the need to book a time slot, and they can perform interactive experiments,
i.e., change the experimental instructions multiple times throughout the course of the experiment. The web server provides the user interface for
experimentation, while the forum server hosts social networking services (chat capabilities, a question and answer forum, etc.). Overall, this architecture
is optimized to coordinate asynchronous user actions with synchronous equipment cycles, which enables a convenient user experience while optimally
utilizing parallelized equipment at the same time.

teractive experimentation is envisioned for the future, which
argues for additional relevance of our present work.

We propose a general systems architecture for cloud experi-
mentation for biology that can scale to large numbers of users
and diverse applications in a cost - and logistics - effective
manner (Fig. 1). We prototyped this architecture as a “mini-
cloud,” which served as a lab component for a graduate-level
biophysics class and conducted a user study within both re-
search and educational contexts. During this study, we as-
sessed the effectiveness, general logistics, and HCI aspects
of our system, particularly focusing on answering the fol-
lowing questions: (i) Can cloud experimentation be success-
fully integrated in education? (ii) Does it enable true open-
ended research, especially by lowering access barriers for
non-biologists? We then discuss limitations of the present
system followed by some practical lessons learned, and scal-
ability issues. Finally we allude on how such a system can be
leveraged for learning analytics and discuss future directions.
The novelty of our work was not in the individual parts but
in the whole combination of existing technologies to derive
the aforementioned system. The key contribution was to im-
plement and analyze the first end-to-end use-case of a truly
interactive biology cloud lab for education. This work is tar-
geted toward a broad audience of engineers, biophysicists,
educators, and learning researchers.

System Architecture and Biotic Processing Unit (BPU)
Biological investigations are diverse (Fig. 1), and unlike gen-
eral purpose computing, there exists no clear basis (e.g. bi-
nary 1s and 0s) for executing all types of experiments. There-
fore, we adopted a domain-specific philosophy [46] to de-
sign conceptual high-throughput hardware - Biotic Process-
ing Unit (BPU) - to handle only a specific type of experiment
with a specific set of instructions. Swapping out this hard-
ware allows execution of different types of experiments. The
goal then is to design a general architecture of a cloud system
that can exploit and integrate these hardware under a common

platform using a set of protocols while maintaining some key
properties: 1) scalable, 2) time-shared and 3) available at
all times, meaning that users can access and run experiments
anytime without having to book a time slot. In this section
we will mainly discuss the design criteria of the key hardware
component of our system – Biotic Processing Unit (BPU) –
and how it interacts with the central servers.

At the backend, experiments are executed in multiple BPUs,
and we formally define one of these as an automated hard-
ware that houses a specific set of biological specimens in one
or more isolated compartments, termed wells (Fig. 1). Each
of these wells is shared among one or more users, who col-
laboratively run an independent experiment where the stim-
ulus and measurements can be characterized by the dimen-
sionality of the corresponding spaces. Similar works in the
past [28, 34], though different engineering disciplines, have
mostly shared their piece of hardware by requiring a user to
book a time slot in advance. This approach is not suitable
for biology as a single experiment may require an extended
period. An alternative approach could be batch-processing,
whereby all the experimental instructions from all the users
can be aggregated and run concurrently without any further
interactions with the user, although it is desirable that users
are able to run experiments in several interactive cycles. We
enable this interactivity by defining a time scheduling pro-
tocol that is carried out jointly by the central server and a
microcontroller inside a BPU.

Time Scheduling
To achieve both interactivity and concurrent execution of ex-
periments, we let users provide instructions in discrete blocks,
where each block consists of a small sequence of instructions
that need to be performed at a future time. Critically, the in-
structions within a single block can be executed in any order,
i.e a block is a declarative program [33]. A user is allowed
to add blocks at any time as well as edit or delete any exist-
ing block that has not been executed yet. Total time ordering
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of the instructions is achieved by scheduling these blocks at
different points on a time line. With this restriction, a BPU is
then able to aggregate blocks from all the users that pertain to
a certain time and interleave them in a way that is optimal for
a batch execution by the BPU, which may involve a complex
actuation sequence of various parts. We term the life time of
a single experiment as an experimental session.

Microcontroller
A microcontroller must be integrated within each BPU be-
cause the instructions, which must be domain specific like the
BPU itself, need to be interpreted at the BPU site. This micro-
controller may operate synchronously with two independent
clock cycles (Fig. 1). The first clocks polls the central server
to find appropriate instruction blocks from different users, in-
terprets them, and executes them as discussed earlier. The
second clock acquires the measurement data (output) from
the various wells and demultiplexes them for different users
before sending them back to the storage server (Fig 1).

Cloud Services and UI
Users submit experimental instructions in blocks, which
needs to be performed at a future time, interactively through
a web application that communicates with central database
server asynchronously. Instructions from several users are
queued in this database server until BPUs are ready to poll
in a synchronous manner as discussed earlier. This buffering
aspect of the database server helps connect the asynchronous
user interactions in the frontend with the synchronous BPUs
at the backend (see Fig 1). The current state of the exper-
iment, which resulted from executing past instructions, are
relayed to the user whenever they are available. Note that the
frontend UI also need to be domain specific, although not as
specific as the BPU since, for example, a single UI can con-
trol a large class of experiments involving stimuli and mea-
surements via multidimensional spatiotemporal arrays (such
as chemical pipetting and time-lapse imaging, respectively).
We omit discussion related to user and data management as
any standard framework for these purposes can be adopted.

Practical Implementation of the Architecture

Biology
In order to assess the practical utility of this cloud architec-
ture, we implemented a mini-cloud system for educational
purposes that allowed students in a graduate-level biophysics
class to execute open-ended biology experiments like real sci-
entists. We named our system Jagadish after the Bengali
polymath Sir Jagadish Chandra Bose who had worked ex-
tensively in both wireless communication [16, 21] and biol-
ogy [17]. In this section we discuss our implementation at
a broader level while we welcome the reader to see the ap-
pendix and supplementary material for all the details. This
implementation also permitted instructors to perform learning
analytics [10, 11, 14]. We selected the chemotactic response
of the slime mold Physarum polycephalum (Fig. 2, SOM1)
as our experimental paradigm. P. polycephalum is a single-
celled, multi-nuclei, cytoplasmic organism that forms active
and dynamic tube networks to search for food [6, 7, 35, 42,
43, 50]. These interesting macroscopic growth and foraging

phenotypes represent both multicellular behavior and devel-
opment [36], inspiring many questions for further investiga-
tion in areas ranging from basic biology and biophysics to
abstract computation [6].

15h 23h 37h

3cm

Figure 2. The spatiotemporal chemotactic response of the slime mold
P. polycephalum (yellow) to an oatmeal solution trail (red) offers a sci-
entifically interesting experimental paradigm with high-dimensional in-
put/output spaces. Food trails of liquid oatmeal pipetted onto an agar
surface lead to growth behavior in which P. polycephalum follows the
trail at a speed on the scale of 1 cm/h. Once the organism encounters one
or more food sources, it optimizes its branches in terms of path length
and fault tolerance. During this process, the organism sends pulsating
fluid flows at a frequency of approximately 0.5 min-1 throughout this net-
work, achieving both mass transport and global communication. Note
how P. physarum follows the trail through sharp turns while occasionally
deviating from the trail. See SOM1 for animation. This experiment was
executed automatically by the BPU implementation in Fig. 3.

Prototype BPU
To automate these experiments with P. polycephalum, we
built a BPU that carries out automated liquid handling and
imaging tasks to support multiple experiments inside standard
Petri dishes (Fig. 3A; SOM2 and Methods for details). In this
system, each Petri dish represents a well that houses a sin-
gle experiment that can be shared by multiple online users.
The input space in this case is the spatiotemporal dispensing
of liquid oatmeal solution, which prompts the chemotactic
response of P. polycephalum, while the output space is pri-
marily a time-lapse sequence of images that captures these
responses. The oatmeal solution is dispensed by a motor-
ized gantry, which we prototyped using a Lego NXT robotics
kit, that positions a liquid pipettor (Fig. 3B) on top of a reg-
ular flatbed scanner. Standard plasticware and Petri dishes
containing various liquids and biological materials are placed
on this scanner, which carries out time-lapse imaging of the
specimens from below. One BPU fits six Petri dishes (90
mm in diameter) or five standard rectangular plastic wells (85
mm x 127 mm). Imaging rate and resolution were set to 6
images/h at 300 DPI. A Lego NXT robotics kit combined
with a Raspberry PI mini-computer board [3] served as the
controller for this BPU. For the backend, we stacked three
such BPUs into an enclosed regular computer server rack
(Fig. 3D). Multiple hardware and software fail-safe mecha-
nisms were implemented to ensure reliability and long-term
durability for a 10-week deployment in a classroom.

Backend Servers
We implemented a scalable backend server (Fig. 4A) to con-
nect these BPUs (Fig. 3) to the Internet. The backend server
system consists of a web server, a database server, a chat
server (to allow discussion among collaborators and commu-
nication with the system administrator), and a storage server
(primarily for bulk data, such as time-lapse images captured
by the scanner). The entire software stack is open- source.
Each BPU, which houses multiple experiments concurrently,
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Figure 3. We developed an instance of a BPU for automated fluid handling and imaging to execute versatile biology experiments. (A) A Lego-based
gantry for positioning a pipette (stimuli) in the x, y, and z planes is placed atop a flatbed scanner (measurements). Biological materials are housed in
standard plasticware (wells) placed on this scanner. A Raspberry Pi device combined with an NXT robotics kit controller forms the microcontroller
component of the BPU, communicating with the central server, compiling instructions on the fly, and demultiplexing the raw scanned image data for
appropriate users (Materials and Methods). The small size and the built-in WiFi capabilities of Raspberry Pi also enable wireless operation of the BPU
inside a controlled environment. (B) The Lego-actuated pipettor is made from a standard syringe that reliably pipettes volumes on the order of 10 µL.
(C) Example of eight successive water droplets dispensed and imaged by the BPU. (D) A standard computer server rack provides housing for three
BPUs (1-3).

polls the database server synchronously at a regular interval
of 10 min before compiling and executing all pending pipet-
ting instructions from several users in parallel.

User Interactions
A system admin would start an experimental session by
preparing Petri dishes (6 to 18 depending on the size of the
dishes) that are inoculated by P. polycephalum at the center
unless a special initial condition was specified by a student
ahead of time. For example, towards the end of the course,
one student requested the system admin to start his experi-
ments with multiple tiny isolated pieces of P. polycephalum
instead of one at the center (discussed in details later). Exper-
iments pertaining to a single student were distributed across
multiple BPUs to ensure there are other experiments to con-
tinue with in an event of a catastrophic BPU failure. Students
were notified through emails along with secret keys, unique
for each student, once all experiments were loaded. A student
could then access her experiments using the given key, which
she could optionally change later, from her account’s home-
page (see Fig 4A). This experimental session would last two
to three days in which time there would be no further manual
intervention. During this time students were able to manip-
ulate and investigate the states of their experiments concur-
rently through a web based UI (discussed below) at any time
and place without having to book a time slot. All experimen-
tal data were archived when the session expires and students
were able to investigate these later at any time using the same
UI.

We developed the frontend UI as a cross-platform web appli-
cation (Fig. 4, SOM2-4 for details). After selecting an exper-
iment from the dashboard (Fig. 4A), the user is directed to
the web interface (Fig. 4B), which is essentially a time-lapse
movie player showing the selected Petri dish. The user can
now select various UI elements (Fig. 4C) to play back and in-

vestigate the collected time-lapse data interactively (Fig. 4D)
as well as program new blocks of instructions based on the
current state of the investigation. All experimental instruc-
tions are visually programmed, i.e., liquid stimuli are drawn
as desired output pattern directly onto the time-lapse images,
where stimuli can be dispensed as single drop at a time or
as a trail of fluid (Fig. 4B): a temporal brush leads to a trail
that grows incrementally over time instead of dispensing all
of the liquid at once. Being a web application, our UI runs
on most systems, including mobile phones (Fig. 4E, SOM4).
We implemented adaptive streaming of time-lapse images to
account for slow Internet speed and display size. Finally, we
also added a live chat capability and a collaborative editor
(similar to Google Docs) to allow discussion and collabora-
tive experimentation among multiple users. In this implemen-
tation we allowed users to optionally set their own experi-
ments to be viewable publicly, i.e. other users can look at the
results but not necessarily modify anything.

USER STUDY
We evaluated our implementation of a cloud experimentation
system in the light of its utility in education and research
(mostly qualitatively as it is the first of its kind) by integrating
it into an interdisciplinary graduate-level biophysics course
titled, “Biophysics of Multicellular Systems and Amorphous
Computing.” The course objective was to learn modeling ap-
proaches for understanding multicellular biological pattern
formation. During this user study we automatically logged
every user interaction (i.e., position and timing of mouse click
as well as any other data entry) in the backend database server
upon full written consent of the students. The frontend UI
sent a small packet of ping data to the backend server every
second as long as the experiment page was in the foreground
or the user interacted with the system in some way, allowing
us to compute session times more reliably. Users were able to
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Figure 4. The frontend web-based UI allows the user to program in-
structions through visual programming, to analyze experimental data
remotely, and to collaborate with other users. (A) The dashboard view
displays five lists of experiments, enabling easy navigation through all
past and currently running experiments owned by the user as well as
access to experiments made open or publicly viewable by other users.
(B) The desktop interface allows the user to perform experiments (e.g.,
program timing and position food drop placements), browse and mag-
nify the data, and chat with other users. This layout was optimized for
experiments with P. polycephalum (Fig. 2). (C) The relevant user inter-
action control buttons from (B). (D) The user can zoom-in and pan on
high-resolution images provided by the server on demand (in contrast to
a simple digital zoom). (E) Mobile UI with a customized layout for small
displays. See SOM2-4 for more detail.

interact with 30 UI elements; we logged each element accord-
ing to the timestamp, IP address, browser type, experiment
identification number, image sequence visible on the screen,
and exact viewing geometry (window size, image size, zoom
level, center of image on the window). These logs enabled us
to reconstruct log-in activity as a movie based on a set of very
compressed data (see Fig 7C).

We carried out three one-on-one interviews with each student:
an initial interview at the end of week 2 (out of 10 weeks), an
interview in the middle of the term (week 5), and an exit in-
terview during week 10. We also collected written feedback
and bug reports with every homework. During the second in-
terview, we learned that the students wanted a system feature
that allowed them to view each others’ experimental data, but
not necessarily interact with it. We immediately implemented
this critical design feature.

Cloud Experimentation for Education
From an educational point of view we were particularly inter-
ested in whether this platform could serve as a wet-lab com-
ponent to enrich a theory course. Eleven online experimenta-
tion sessions were conducted over 10 weeks (Fig. 5A). Each
session lasted 2-3 days, during which each student ran 2-6
experiments concurrently; the system was robust throughout
the course. Four graduate students enrolled from different
backgrounds: two from bioengineering, one from electrical

engineering, and one from applied physics. The latter two
students had no prior biology wet-lab experience. This small
student population allowed us to follow each student closely
(aided by the data-logging capabilities of the system itself),
to collect feedback multiple times during the course, and to
conduct post-interviews. This provided us with an in-depth
understanding of how, in essence, such a system could aid
education and research without having to deal with complex-
ities due to scale in an initial deployment.

The system was integrated into this course in three main
phases: familiarization and guided homework (2 weeks), hy-
pothesis iteration (4 weeks), and final project (2 weeks). Stu-
dents spent the first two weeks exploring and becoming ac-
customed to P. polycephalum and the UI, ran experiments and
measured the growth rate and fractal dimension of P. poly-
cephalum (Fig. 5B) [29] . All students reported that they
found the UI to be fairly intuitive and simple, with the ex-
ceptions of a few minor bugs and confusing UI elements that
were fixed immediately. During the second phase, students
were asked to develop and test experimental hypotheses, for
examples, whether P. polycephalum can be made to split into
two parts, or whether it can distinguish between different-
sized food sources (Fig. 5A, SOM5a-c). During the final
project phase, students worked in pairs on one of these hy-
pothesis with the goal of bringing quantitative experimental
data and biophysical modeling together; we will discuss one
of these projects in depth in the next section (Fig. 6).

Student feedback indicated that compared to conventional
labs, this cloud experimentation platform lowered the thresh-
old of entry to biology experimentation in three major ways.
First, it empowered non-biologists to perform real experi-
ments without concerns about wet-lab training and safety. For
example, the electrical engineering and the physics student
respectively stated: “It was a matter of playing around” and
“...if you really require me to take one month to train for it,
then I would probably just skip that [class].” All students re-
ported that their initial system contact was easy yet unstruc-
tured and exploratory while they worked through the guided
homework (Fig. 5B). These initial playful interactions led to
more systematic self-driven explorations that gave rise to dif-
ferent qualitative hypotheses. Second, the system abstracted
away all of the wet-lab details and allowed the students to
concentrate on experimental strategies and data analysis; as
expressed here: “When I worked in a wetlab, I would have
to prepare a whole bunch of agar plates, ...cleaning a whole
bunch of stuff, ...lots of like chemical mixing so you get the
right concentration. .... that’s pretty time consuming stuff that
is sort of logistical, so it’s nice to not have to do it.” Third, the
system provided a critical convenience by allowing students
to remain continually engaged with their experiments from
any place at any time: “To place a droplet every 30 minutes,
you would have to be up 24 hours, you could not even take
a nap.” The logged user interaction data confirmed that stu-
dents ran experiments through mobile phones while on the
move and sometimes even past midnight.

A pressing question in educational research is whether com-
puter simulations can substitute for real experiments [12, 15,
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Figure 5. Integrating our cloud experimentation system into a lecture-based course on the biophysics of multicellular systems empowered biology
experimentation by abstracting away hands-on skills and logistics. (A) Examples of experiments carried out by students throughout the course. The
students progressed from initial open-ended, playful exploration of broad behavioral aspects, to developing more specific hypotheses about the observed
behaviors, to setting up experiments to test these hypotheses. (i) How well does P. polycephalum follow a path and make sharp turns? (ii) How does
P. polycephalum travel between islands of food? (iii-iv) How does P. polycephalum decide where to go when presented with different numbers of food
droplets (in this case, three versus one)? (v-viii) Changes in the experiments carried out by one student throughout the course. See SOM5a-c. (B)
Sample homework from students. (i) Quantification of apparent area (growth) of P. polycephalum over time. (ii) Computing the fractal dimension from
binarized P. polycephalum images via the box-counting method.

24, 30, 38, 45, 52]. In interviews, the students expressed a
clear preference for the latter. First, real systems have im-
plicit narratives attached to them through which students can
be more appreciative of and connect more naturally to the
system; knowing that something is real changes student mo-
tivation. As one student expressed“Well, it’s real, that’s why
it is so exciting! And so, then you’re genuinely interested in
asking more questions. So, I think you learn a lot more.”
Second, real systems promote open discovery, especially in
the context of biology. This context can also lead to unex-
pected experimental observations (see next section, Fig. 6A),
which would not be possible in a virtual environment (e.g.,
PhET [38]). Ultimately, each instructional medium (conven-
tional lab, virtual lab, online lab) has its own benefits [45],
whereas combined or hybrid approaches normally achieve
better learning gains [15, 20]. Hence, an exciting future re-
search area is how to achieve optimal synergy between cloud
experimentation and existing educational media [15].

Cloud Experimentation for Research
Can cloud experimentation enable key aspects of the scien-
tific process and lead to genuine scientific advancements?
Our evidence suggests a positive answer: The applied physics
student who had no prior wet-lab or biology experience, went
through multiple hypotheses and exploratory phases through-
out the course (Fig. 5Av-viii). During this process, he ob-
served that P. polycephalum often does not stop growing even
when all food stimuli are depleted (Fig. 5Avii). This obser-
vation led him to run a controlled experiment with two Petri
dishes, one with and one without food. He then made the
unexpected observation that a tiny isolated fragment of P.
polycephalum moved across the dish in a “worm”-like, ran-
dom, self-avoiding path. The student emailed a screen shot
(Fig. 6A) to the system administrator with the text “... I’ve
attached the picture of an example of what I mean here -
you probably did it by accident last time but it gave birth to
a worm-like small strain of physarum moving around which
is really interesting and potential more suitable for model-
ing!” During the remainder of the course this student (to-
gether with another student) employed several more rounds

of experimenting and modeling to explore this initial obser-
vation and to understand how the branching dynamics and
morphology of the organism changes over time and with the
organism’s size (mass) (Fig. 6B-D). The student asked the
system administrator to setup experiments with smaller frag-
ments of P. polycephalum of varying size. The administra-
tor fulfilled this request (Fig. 5Aviii), which went beyond the
experimental paradigm intended for the course. The student
was particularly struck by his observation that organisms with
smaller masses had fewer branches (Fig. 6Ci), which seem-
ingly went against the notion of “self-similarity across scales”
in fractals [29] that had been discussed earlier in the course.
The students’ models iterated from symmetric (Fig. 6Cii) to
probabilistic (Fig. 6Ciii) branching models, and eventually
developed a dynamic model with several phenomenological
rules (Fig. 6Civ), such as the model would conserve mass
and branch tips would grow as long as there is mass available,
otherwise growth stalls and tips shrinks to the last branching
point when stalled for too long, thereby providing mass for
other growing tips. This model generated visually realistic
dynamic morphologies with multiple simultaneously expand-
ing and retracting branches (Fig. 6D). The students also noted
limitations in their model, for example that the ratio of retrac-
tion and outgrowth rates did not match with the experimental
data. In order to go beyond a visual comparison, the students
also compared the fractal dimension of P. polycephalum frag-
ments versus total mass (Fig. 6D, SOM6) between the model
and the experimental data, and obtained quantitative agree-
ment [15].

To assess the novelty of these findings, including modeling,
we conducted a literature search that failed to uncover any di-
rect reports of this behavior (see Appendix for details on this
literature search). While we suspect that the mass-dependent
morphology of P. polycephalum may be known [7, 23], no
publication has discussed this feature or reported systematic
investigations of its dynamics. The students will publish a
more detailed analysis of their model separately. This case
study aptly demonstrates that the logistic abstraction offered
by cloud experimentation enables individuals without biol-
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Figure 6. Chance observation by one student and subsequent iterative biophysical model development and experimental testing represent genuine
discovery and the scientific method. (A) Email attachment by student sent to the system administrator illustrating the observation that small pieces
of P. polycephalum behave like a “worm” rather than a fractal (arrow and circle drawn by student). (B) Experimental time sequence of medium
sized P. polycephalum demonstrating branching dynamics and morphology. (C) The modeling approach taken by this student (jointly with another
student) as part of their final project. (i) P. polycephalum data at slightly different scales. The student was particularly struck by his observation
that organisms with smaller masses had fewer branches, which seemingly went against the notion of “self-similarity across scales” in fractals that
had been discussed earlier in the course. Scale bars, 3 mm. (ii-iv) Models developed by students of increasing mathematical complexity and visual
correspondence with experimental data: (ii) Static symmetric bifurcation model. (iii) Static random bifurcation model. (iv) Dynamic growth-retraction
model that also includes conservation of total mass. (D) Time sequence of model (iv) for medium-sized fragments captures realistic branching dynamics
and morphologies (compare to B). See SOM6. (E) In order to go beyond a visual comparison, the students compared the fractal dimension of the P.
polycephalum fragments and total mass between the model (blue) and the experimental data (red), and obtained reasonable quantitative agreement.

ogy training to perform meaningful experiments. Critically,
our system empowers users to iterate computational models
side-by-side with experiments. This achievement matches de-
sign principles where educational researchers have recently
advocated to “selectively expose” students only to learning-
relevant features, while technical aspects are hidden unless
needed to accomplish the learning goal [13].

LIMITATIONS
Any cloud experimentation system is necessarily limited to a
specific sub-set of possible biology experiments, due to the
biological material present and the restricted state and mea-
surement space of the automation. In other words, the equiv-
alence of Turing completeness for biology experimentation
is not obvious. For example, in our implementation of the
BPU, the user was restricted to study physarum chemotaxis
to oatmeal solutions, and there was no mechanism for pro-
viding an alternative stimulus such as shining light patterns
to study phototaxis. Furthermore, while backend servicing is
inherent to all cloud systems, biological systems would typi-
cally require extra care. For example, physarum experiments
were loaded manually at the beginning of an experimental
session but in principle this type of bottleneck can be miti-
gated by automating the loading process itself as BPUs are
domain specific.

DISCUSSION AND CONCLUSION
The primary goal for this project was to understand the effec-
tiveness and potential of cloud experimentation for biology,
and we share some practical lessons for future implementa-
tions: (1) Building and utilizing such cloud systems requires
integrating diverse expertise ranging from biology, mecha-
tronics, database, web interfaces, education, and more. A
modularized approached with well-defined and minimal I/O
interfaces between modules enables parallel development and
upgrading of individual components. Parallel modules (such
as multiple BPUs) provide overall robustness against compo-
nent failure, and we propose distributing experiments from
the same user across multiple BPUs. (2) Constructing and

maintaining the BPU and it’s biological content is the most
challenging of those modules as specimens must be stable
and responsive to defined stimuli over a long time, while all
other components (electronics, web servers, etc.) are straight-
forward by today’s standards. Thus, we recommend to first
identify a suitable BPU and experimental specimen, assess
and test their robustness and logistics towards the desired ap-
plication, and only then implement any of the other compo-
nents. (3) Any (online) experiment has limitations, but users
will likely request additional features. We suggest that the
developers and system administrators aim to be (reasonably)
flexible, especially while these cloud systems are under devel-
opment, and the UI should allow to request extra features. For
example, we allowed the users to request different placements
and sizes of P. polycephalum seeds on the dish by emailing a
sketched image to the administrator. (4) There are many open
questions regarding what constitutes an optimal UI for per-
forming experiments online. For example, during our study
users were online only for very short bursts of time, rendering
our chat ineffective for inter-user communication; an online
Q/A forum, similar to Piazza or Stackoverflow [47], would
have been a better choice. Hence critical UI features should
be user tested well in advance, while a few non-critical ones
can be beta-tested during the actual usage.

The proposed cloud experimentation architecture is scalable
as BPUs are independent of each other and more BPUs can
be added easily on demand, while failure of one does not ef-
fect any other. For example, In our implementation, we had
a single BPU failure during the 10 weeks user study, which
we were able to recover within 2 hours while the rest of the
system was still live. Even though BPUs are domain spe-
cific, one can easily run different types of experiments that
happen to fall within the state space of a BPU. For example,
we employed the same prototype BPU to run gene induction
experiments on 24-well plates where users could program in-
structions using a simple scripting language (data not shown).

Tools for Learning analytics [40] come for free with cloud ex-
perimentation as we were able to track every student’s activ-
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in which the interaction history (experimentation and data analysis) of a single student is shown over the entire course in chronological order. Red
ticks, log-in activities; horizontal blue line, first to last log-in activities for a particular experiment; pink background, log-in activities on experiments
belonging to other students. (B) Comparison of user history for all four students revealed substantial differences in user history (Biv is the same as A).
(C) Complete visual reconstruction of what a student did and saw on the UI enabled us to investigate how discoveries (Fig. 6) came about (see full movie
in supplementary material SOM7). (i-ii) Student zooming in when the small-scale behavior of P. polycephalum was first seen (experiment marked with
an x in (A); session is marked with a black box). (iii) Immediate switching to concurrently running a control experiment (marked y in (A)) and zooming
indicates that the student is searching the available data for similar behavior. (iv) Logging back into the original experiment for re-analysis followed
by (v) emailing the system administrator with an attached image. (vi) The student notices similar behavior in the custom setup experiment on day 3,
confirming discovery. See SOM7 for full animation.

ities in full detail as demonstrated in Figure 7. An instructor
could potentially use these activity logs to visualize emerging
patterns, for example Figure 7A,B reveals that one student
was very keen at looking back to this previous results as well
as others’ result before starting his own experiments. Fig-
ure 7C demonstrates how we were able to reconstruct the ex-
act sequence of actions made by a student in form of a video
from just logged data that gave us an intriguing window into
the moment the physics student made his first “worm like”
observation. Thus the application of cloud experimentation
in learning analytics is clear and we intend to provide a de-
tailed study in a separate paper.

Wide adoption of cloud experimentation depends on the
availability of suitable BPUs and interest groups of early
adopters (most likely educators). Much existing (automated)
life-science equipments do not lend themselves directly as
BPU, since stimuli and measurement are often not inte-
grated within one machine (such as separated liquid-handling
robots [31] and motorized microscopes [37]), or equipment
control is closed during a run (such as real-time PCR ma-
chines [51], which do integrate stimulation and measurement,
but where protocols cannot be altered during a run). BPUs
can be developed at the high-end professional level as well as
at the do-it-yourself scale. The presented Lego BPU is itself
functional as a mini-cloud, and is supported by increasingly
low-cost robotics, such as those used for 3D printers. The
do-it-yourself and open source communities have made sig-

nificant contributions to larger development efforts [2]. We
ultimately envision horizontal evolution of BPUs to address
diverse applications, and that great value is placed on de-
signs that are simple, easy to assemble, and modular, which
over time will lead to higher-throughput and lower-cost sys-
tems. For universality, BPUs ultimately need to be coupled
(e.g. output of one BPU is fed as input to another), and
a lot of future work will hinge on accomplishing this in a
scalable manner. Since many biological applications occur
at sub-mm scales, even massively parallel BPUs in the fu-
ture would require only small footprints and researchers have
already demonstrated how micro-organisms could be inter-
acted with remotely in form of Biotic Games, housed in small
micro-fluidic chambers [39]. Reasonably strict protocols for
BPUs and UIs will support this development. We speculate
that early adoption will come from educational applications,
with primary life-science research following later, since ed-
ucational experiments can be less sophisticated, include a
much larger and homogeneous user base, and no novel dis-
coveries must be made during the use of the platform. For
the foreseeable future, these cloud systems may remain lo-
cal (such as within a school), although an educational school
supply company could offer a central service similar to that
offered by some remote labs in engineering education.

In summary, we have developed a system architecture for
biology cloud experimentation that is optimized for sharing
parallelized high-throughput equipments among many users
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over the Internet in a scalable manner. The main distinguish-
ing features compared to previous work in other engineering
disciplines [9, 22, 25, 26, 27, 28] are that all experiments are
interactive and are available all the time to the users seam-
lessly, while they executed in a high-throughput manner us-
ing time-sharing at the backend. Our key contribution was to
successfully implement this architecture and analyze its util-
ity for applications in education and true biological discovery.
We also discussed future directions for further development
along this line and deployment scenarios along with possi-
bilities in learning research. BPU building instructions and
open source software are included (SOM8; SOD1; SOS1) for
implementation and further development.
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