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Previous Work

Perona and Malik (PM) Model (TPAMI, 1990):

∂ f
∂ t

= div(h(‖∇f‖)∇f )

Carmona et al.(TIP, 1998) generalization in 2D:

∂ f
∂ t

=

SF︷︸︸︷
h
(
afnn +bfvv

)
, SF = Stopping Function

where v = n⊥.
3D extension by Gerig et al.(TMI, 1992): Isotropic on the tangent
plane of the gradient.
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Previous Work: Trouble in 3D

PM model in 3D

Original

Curvatures taken
into account

Therefore Weickert classified PM and higher order diffusion
processes as non-linear rather than anisotropic.
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Previous Work: In 3D

Whitaker (VBC, 1994) and Krissian et al.(SCALE-SPACE, 1997)
(KM model), took curvatures into account

The stopping function had gradient magnitude based parameter.

Level Set: The definition of edge is based on the curvature that
is measured on the surface of the level set.

De-noising:
Bilateral filtering, mean-shift filtering and non-linear diffusion
are equivalent: Barash et al., (IVC, 2004).
A recent methods: SRNRAD and ORNRAD (TIP, 2009).
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Contributions

1 Removal of the gradient magnitude based parameter

2 Dynamic adaptation of anisotropy

3 Application in de-noising

4 Implementation recipe in arbitrary regular lattices

Hossain, Simon Fraser University, Canada. gruvi graphics + usability + visualization 6 of 43



Contributions

1 Removal of the gradient magnitude based parameter

2 Dynamic adaptation of anisotropy

3 Application in de-noising

4 Implementation recipe in arbitrary regular lattices

Hossain, Simon Fraser University, Canada. gruvi graphics + usability + visualization 6 of 43



Contributions

1 Removal of the gradient magnitude based parameter

2 Dynamic adaptation of anisotropy

3 Application in de-noising

4 Implementation recipe in arbitrary regular lattices

Hossain, Simon Fraser University, Canada. gruvi graphics + usability + visualization 6 of 43



Contributions

1 Removal of the gradient magnitude based parameter

2 Dynamic adaptation of anisotropy

3 Application in de-noising

4 Implementation recipe in arbitrary regular lattices

Hossain, Simon Fraser University, Canada. gruvi graphics + usability + visualization 6 of 43



The Proposed Method
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Proposed Method: Edge

The red solid curve is the error function while the dashed black curve is the
second derivative of it.

A common technique in 2D image processing.
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Four Objectives of Our Diffusion

Objectives

1 No diffusion along the gradient direction.

2 Diffusion stopped around the edge locations.

3 Diffuse along the direction of the minimum curvature.

4 Diffuse on the tangent plane where the local iso-surface has
similar principal curvatures.

This prevents blurring across an edge.
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Four Objectives of Our Diffusion

Objectives

1 No diffusion along the gradient direction.

2 Diffusion stopped around the edge locations.

3 Diffuse along the direction of the minimum curvature.

4 Diffuse on the tangent plane where the local iso-surface has
similar principal curvatures.

Similar to Krissian et al.(1997), i.e the KM model.
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Four Objectives of Our Diffusion

Objectives

1 No diffusion along the gradient direction.

2 Diffusion stopped around the edge locations.

3 Diffuse along the direction of the minimum curvature.

4 Diffuse on the tangent plane where the local iso-surface has
similar principal curvatures.

For example, on the surface of a sphere or a slab.
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Modelling the PDE

Consider the 1D heat, also known as diffusion, equation:

∂ f
∂ t

= cfxx

A 3D extension of the above:

∂ f
∂ t

= hfr1r1 +gfr2r2 +wfnn

Where the orthonormal bases [r1,r2,n] are min curvature, max
curvature and normal directions respectively.
Setting g = τh and w = ηh we can simplify the above

∂ f
∂ t

= h ·
(

fr1r1 + τfr2r2 +η fnn

)
, τ,η ∈ [0,1]
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Modelling the PDE: Objective 1

Objectives

1 No diffusion along the gradient direction.

2 Diffusion stopped around the edge locations.

3 Diffuse along the direction of the minimum curvature.

4 Diffuse on the tangent plane where the local iso-surface has
similar principal curvatures.

∂ f
∂ t

= h ·
(

fr1r1 + τfr2r2 +η fnn

)
, τ,η ∈ [0,1]

Set η = 0
∂ f
∂ t

= h ·
(

fr1r1 + τfr2r2

)
, τ ∈ [0,1]
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Modelling the PDE: Objective 2

Objectives

1 No diffusion along the gradient direction.

2 Diffusion stopped around the edge locations.

3 Diffuse along the direction of the minimum curvature.

4 Diffuse on the tangent plane where the local iso-surface has
similar principal curvatures.

Hossain, Simon Fraser University, Canada. gruvi graphics + usability + visualization 12 of 43



Modelling the PDE: Objective 2

Define h

h(α) = 1− (0.9)(
α
σ )

2

, σ ∈ R

Takes the directional second derivative
fnn along the normal n as argument.

α

h(
α
)

0 5 10

Plot of h(α)

So far: ∂ f
∂ t = h(fnn)

(
fr1r1 + τfr2r2

)
Diffusion stops when fnn ≈ 0, i.e. around the edge locations.
Homogeneous regions remains unaffected.
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Modelling the PDE: Objectives 3 and 4

Objectives

1 No diffusion along the gradient direction.

2 Diffusion stopped around the edge locations.

3 Diffuse along the direction of the minimum curvature.

4 Diffuse on the tangent plane where the local iso-surface has
similar principal curvatures.
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Modelling the PDE: Objectives 3 and 4

∂ f
∂ t

= h(fnn)
(

fr1r1 + τfr2r2

)

τ =


(

κ1
κ2

)2λ

where |κ2|> 0,λ ∈ Z
1 κ2 = 0

where,

κ1 : minimum curvature
κ2 : maximum curvature

Usually λ = 2 works well
Curvatures are measured from a blurred version of the data fρ
τ is replaced by τρ

Hossain, Simon Fraser University, Canada. gruvi graphics + usability + visualization 15 of 43



Modelling the PDE: Objectives 3 and 4

∂ f
∂ t

= h(fnn)
(

fr1r1 + τfr2r2

)

τ =


(

κ1
κ2

)2λ

where |κ2|> 0,λ ∈ Z
1 κ2 = 0

where,

κ1 : minimum curvature
κ2 : maximum curvature

Usually λ = 2 works well
Curvatures are measured from a blurred version of the data fρ
τ is replaced by τρ

Hossain, Simon Fraser University, Canada. gruvi graphics + usability + visualization 15 of 43



Modelling the PDE: Objectives 3 and 4

∂ f
∂ t

= h(fnn)
(

fr1r1 + τfr2r2

)

τ =


(

κ1
κ2

)2λ

where |κ2|> 0,λ ∈ Z
1 κ2 = 0

where,

κ1 : minimum curvature
κ2 : maximum curvature

Usually λ = 2 works well
Curvatures are measured from a blurred version of the data fρ
τ is replaced by τρ

Hossain, Simon Fraser University, Canada. gruvi graphics + usability + visualization 15 of 43



Simplification

So far we have

∂ f
∂ t

=

Stopping Function︷ ︸︸ ︷
h(fnn)

(
fr1r1 + τρ︸︷︷︸

Isotropy Function

fr2r2

)

Which can be simplified to
...

∂ f
∂ t

=−h(fnn)‖∇f‖(κ1 + τρ κ2)

Has a similar form to Mean Curvature Motion (MCM), yet essentially
different.

MCM:
∂ f
∂ t

=−‖∇f‖(κ1 +κ2)
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Significance of the Stopping Function

Original MCM Our method

Our: ∂ f
∂ t =−h(fnn)‖∇f‖(κ1 + τρ κ2), h(fnn) = 1− (0.9)

(
fnn
σ

)2

, σ ∈ R

MCM: ∂ f
∂ t =−‖∇f‖(κ1 +κ2)
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Stability

Courant-Friedrichs-Lewy (CFL) revealed the following
necessary condition for stability:

∆t≤C
d2

2
, d =min{∆x,∆y,∆z}, C =Courant Number

C ≤ 0.8 is stable for most practical purposes.
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Results
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Results: Consistent Smoothing

KM method: k = 40 Original Our method: σ = 1
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Results: Consistent Smoothing

KM method: k = 60 Original Our method: σ = 10
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De-noising Properties
Note
We used the same parameter settings for all our de-noising
experiments across all datasets and noise types.
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Results: De-noising (Gaussian)

Noisy, SNR=12.89 Original Diffused, SNR=26.12

OriginalNoisyDiffused
Profile
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Results: De-noising (Salt and Pepper)

Noisy, SNR=12.89 Original Diffused, SNR=26.12OriginalNoisyDiffused
Profile
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De-noising Comparison
Note

Comparison with SRNRAD and ORNRAD (Krissian and
Aja-Fernández, 2009).
We did not change any parameter settings.

Hossain, Simon Fraser University, Canada. gruvi graphics + usability + visualization 24 of 43



Quantitative Measures

Mean Squared Error (MSE)
Structural Similarity Index (SSIM)
Quality Index Based on Local Variance (QILV)

Original Blurred Gaussian noise
SSIM: 0.8235 (Good) SSIM: 0.4643 (Bad)

QILV: 0.4793 (Bad) QILV: 0.7192 (Good)
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De-noising: Comparison

Gaussian noise

Original

MSE SSIM QILV
Noise 558.750 0.540 0.503
SRNRAD 162.017 0.816 0.886
ORNRAD 153.873 0.819 0.859
Our 75.878 0.900 0.860

Noisy Our SRNRAD ORNRAD
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De-noising: Comparison

Rician noise

Original

MSE SSIM QILV
Noise 450.558 0.561 0.712
SRNRAD 232.459 0.792 0.913
ORNRAD 226.405 0.795 0.889
Our 173.851 0.795 0.820

Noisy Our SRNRAD ORNRAD
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De-noising: Remarks

Our method performs similarly if not better in
many cases.

Matlab implementation is ≈ 14× faster than
a multi-threaded C/C++ based ORNRAD.

Our formulation is simpler
ORNRAD requires, beside complex statistical
measurements, eigen decomposition of structure
tensor.
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Extension Framework for Regular Lattices
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Lattices in 3D

Cartesian Cubic (CC) Body Centric Cubic
(BCC)

Face Centric Cubic
(FCC)

A regular lattice can be characterized by a matrix L
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Motivation For Other Lattices

Tai Meng et al. (2011) and Entezari et al. (2008)

CC BCC
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Motivation For Other Lattices (Contd.)

Alim et al. (2009)

CC BCC
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Taylor Expansion of Discrete Convolution

Discrete convolution of f [k] with a filter ∆[k] can be written
as the following:

f ∗∆ = f w
r [k] = ∑

n
a∆

n︸︷︷︸
Taylor Coefficient

·Dnf [k] f [k] = f (Lk)

And a∆
n is a linear function of the filter weights ∆[k]
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Linear System

f ∗∆ = f w
r [k] = ∑

n
a∆

n ·Dnf [k], f [k] = f (Lk)

To extract the u-th derivative Duf [k], correct up to a
polynomial order of n, the following must be satisfied

a∆
n =

{
0, n ∈ η

[0,n]
d and n 6= u

1, n = u.
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Linear System (Contd.)

Forms a linear system with the unknown filter weights
wi = ∆[ki]


a∆

n1
a∆

n2...
a∆

nm

 =


0
1
...
0



 g1,1 g1,2 . . . g1,m
...

...
...

...
gn,1 gn,2 . . . gn,m




w1
w2
...

wm

 =


0
1
...
0


G W = C
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Infinite Solution Space

The linear system is often not full-rank

Finding a suitable solution by:
Imposing symmetry/anti-symmetry in the filter
geometry
Minimizing error in the higher polynomial order

Usually yields a filter that has small support
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Results
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Quality of Normals: Synthetic Data

2-EF 4-EF

CC

(Mag=3.13, Angle=49.4◦) (2.79, 44.1◦)

BCC

(2.88, 39.2◦) (2.42, 28.7◦)
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Quality of Normals: Real Data (Iso-Surface)

CC (4-EF) BCC (4-EF)
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Effects of Higher Order Filters (CC)

Original

2-EF 4-EF
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Conclusion

We developed . . .
An anisotropic diffusion:

Consistent smoothing
Less effort to choose a parameter
Performs similarly, if not better, to a recent
de-noising method
Fast and easy to implement

A framework to design discrete derivative filters:
Works on arbitrary regular lattice
Any derivative could be estimated
Size of the filter could be specified
PDE implementation on any regular lattice is
made possible
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Future Work

Actual implementation in BCC and FCC

De-noising performance in BCC and FCC

Different functions for τ

Alternate edge detectors
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Thank you for your attention :)
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