DATE
|
TOPIC
|
SUPPLEMENTAL MATERIALS
|
TuJan10
|
Introduction
|
Slides:
Homework Activities:
- Fill
out the Pre-Course
Survey (after the
first class)
- Download
and install SideFX Houdini
Apprentice (registration required)
- Start
Houdini readings and tutorials in Homework
#1
|
Due
WeJan18
|
Homework
#1: Hello Houdini
|
Assignment Link
Goal: Install
Houdini Apprentice, create something simple, and
submit a video or still.
|
ThJan12
|
Introduction to Houdini
|
Material:
- Slides
(PDF)
- Houdini
project file (hipnc)
- Houdini
learning curve (now with server ;)
|
TuJan17
ThJan19
TuJan24
ThJan26 |
Procedural Modeling
|
Material:
- Slides
(PDF)
- Houdini
project file (hipnc)
|
|
Homework
#2: Procedural Modeling
|
Assignment
Link
Image Credit: "Planet
Alpha," Adrian Lazar
|
TuFeb01
|
Particle
Systems
|
Material:
- Slides (PDF)
- Particle system
dynamics (read Witkin course notes, slides)
- Numerical
integration
- Particle collisions
- Energy-based
modeling of forces
- Houdini example:
particles.hipnc
- Particles
bouncing on a plane
- Particles
inside a convex domain
- Particles
inside an SDF domain
- Particles
attached to an SDF surface using damped
springs <oh, my>
References:
|
|
Homework
#3: Dynamics
|
Assignment
Link (PDF)
|
ThFeb03
|
Houdini
Dynamics
|
Material:
|
TuFeb07
-
TuFeb14
|
Constrained Dynamics
|
Notes on Ed
Material:
- Holonomic
constraints, C(p)=0.
- Example: Bead on a
wire
- Differentiating
constraints w.r.t. time.
- Constraint
Jacobian, J
- Lagrange
multipliers, lambda, and constraint forces, J^T
lambda
- Solving for
Lagrange multipliers
- (Implicit
constraint (and half-explicit) DAE integration
schemes)
- Post-step
projection schemes
- Position- vs
velocity-based corrections
- Applications:
Mechanical linkages, inextensibility
constraints, incompressible flow, contact
constraints
- Houdini Example:
Surface constraints
References:
- David Baraff and
Andrew Witkin, Physically Based
Modeling, Online
SIGGRAPH 2001 Course Notes, 2001.
- Examples
from Cloth Simulation:
- Rony Goldenthal,
David Harmon, Raanan Fattal, Michel Bercovier,
Eitan Grinspun, Efficient
Simulation of Inextensible Cloth, ACM Transactions
on Graphics, 26(3), July
2007, pp. 49:1-49:7. [ACM Digital
Library link]
- Jonathan
M. Kaldor, Doug L. James,
Steve Marschner, Simulating
Knitted Cloth at the Yarn Level, ACM Transactions
on Graphics, 27(3), August
2008, pp. 65:1-65:9.
[Advanced] References for
Differential-Algebraic Equations (DAEs):
|
|
Homework #4: Character &
Audio FX
|
Assignment Link (Canvas)
Submit your video artifact
for weeklies |
TuFeb14
ThFeb16
|
Position-Based
Dynamics
|
Slides (PDF)
References:
- Jan. Bender, Matthias. Müller, Miles. Macklin, Position-Based
Simulation Methods in Computer Graphics,
EUROGRAPHICS Tutorial Notes, 2015, Zürich, May
4-8. (Course Notes)(Slides)
- M. Müller, B. Heidelberger, M. Hennix, J.
Ratcliff, Position
Based Dynamics, Proceedings
of Virtual Reality Interactions and Physical
Simulations (VRIPhys), pp 71-80, Madrid,
November 6-7 2006, Best Paper Award, PDF, (video), (slides)
- Miles Macklin,
Matthias Müller, Nuttapong Chentanez: XPBD: Position-Based Simulation of
Compliant Constrained Dynamics in
Proceedings
of ACM Motion in Games, San
Francisco, October 2016
[PDF][Slides][Video][Youtube] (An improved PBD approach)
Other Reading:
- Jos Stam, Nucleus:
Towards a Unified Dynamics Solver for Computer
Graphics, 2009 Conference Proceedings:
IEEE International Conference on Computer-Aided
Design and Computer Graphics, pp. 1-11, 2009. (related talk)
- T. Jakobsen, Advanced
Character Physics, Game Developer
Conference, 2001.
- Miles Macklin, Matthias Müller, Nuttapong
Chentanez, and Tae-Yong Kim. 2014. Unified
particle physics for real-time applications. ACM
Trans. Graph. 33, 4, Article 153 (July 2014), 12
pages. [ACM
link]
- Sofien Bouaziz, Sebastian Martin, Tiantian Liu,
Ladislav Kavan, and Mark Pauly. 2014. Projective
dynamics: fusing constraint projections for
fast simulation. ACM
Trans. Graph. 33, 4, Article 154 (July 2014), 11
pages. [ACM
link]
- Rahul
Narain, Matthew Overby, George E. Brown, ADMM ⊇ Projective
Dynamics: Fast Simulation of General
Constitutive Models, ACM SIGGRAPH
/ Eurographics Symposium on Computer Animation
(SCA), 2016.
|
TuFeb14
|
Final Project Discussion
|
Slides
|
Reference
|
Rigid-Body Motion
|
Slides/Notes (PDF)
References:
- David
Baraff and Andrew Witkin, Physically Based
Modeling, Online
SIGGRAPH 2001 Course Notes, 2001.
- Two-body impulse
calculation: See Baraff course
notes.
- Euler's
equations for dynamics of a single rigid
body in body coords (wiki)
- Excellent
recent review:
- Related topics:
|
ThFeb16
|
Discrete Elastic Rods
|
Reference:
|
TuFeb21
Virtual
|
Yarn-level Cloth
|
References:
- Jonathan
M. Kaldor, Doug L. James,
Steve Marschner, Simulating
Knitted Cloth at the Yarn Level, ACM
Transactions on Graphics, 27(3), August 2008, pp.
65:1-65:9.
- Jonathan
M. Kaldor, Doug L. James, and Steve
Marschner. 2010. Efficient
yarn-based cloth with adaptive contact
linearization. In ACM SIGGRAPH 2010
papers (SIGGRAPH '10). Association for Computing
Machinery, New York, NY, USA, Article 105, 1–10.
https://doi.org/10.1145/1833349.1778842
- Cem Yuksel,
Jonathan M. Kaldor, Doug L. James, and Steve
Marschner. 2012. Stitch
meshes for modeling knitted clothing with
yarn-level detail. ACM Trans. Graph.
31, 4, Article 37 (July 2012), 12 pages. https://doi.org/10.1145/2185520.2185533
- Jonathan
Leaf, Rundong Wu, Eston Schweickart, Doug
L. James, and Steve Marschner. 2018. Interactive
design of periodic yarn-level cloth patterns.
ACM Trans. Graph. 37, 6, Article 202 (December
2018), 15 pages. https://doi.org/10.1145/3272127.3275105
- Kui Wu,
Xifeng Gao, Zachary Ferguson, Daniele Panozzo,
and Cem Yuksel. 2018. Stitch
meshing. ACM Trans. Graph. 37, 4,
Article 130 (August 2018), 14 pages. https://doi.org/10.1145/3197517.3201360
- Kui Wu,
Hannah Swan, and Cem Yuksel. 2019. Knittable
Stitch Meshes. ACM Trans. Graph. 38,
1, Article 10 (February 2019), 13 pages. https://doi.org/10.1145/3292481
[Interactive
knitting demo]
- Vidya
Narayanan, Kui Wu, Cem Yuksel, and James
McCann. 2019. Visual
knitting machine programming. ACM
Trans. Graph. 38, 4, Article 63 (July 2019), 13
pages. DOI: https://doi.org/10.1145/3306346.3322995
- Rundong
Wu, Joy Xiaoji Zhang, Jonathan Leaf, Xinru
Hua, Ante Qu, Claire Harvey, Emily Holtzman, Joy
Ko, Brooks Hagan, Doug James, François
Guimbretière, and Steve Marschner. 2020. Weavecraft:
an interactive design and simulation tool
for 3D weaving. ACM Trans. Graph.
39, 6, Article 210 (December 2020), 16 pages. https://doi.org/10.1145/3414685.3417865
|
ThFeb23
In-person + virtual
|
Show & Tell: HW4 Char/Motion FX
|
|
TuFeb28
In-person + virtual |
Kelvinlets
|
Material:
- Fernando
De Goes and Doug L. James. 2017. Regularized
Kelvinlets: Sculpting brushes based on
fundamental solutions of elasticity.
ACM Trans. Graph. 36, 4, Article 40 (July 2017),
11 pages.
- Fernando
De Goes and Doug L. James. 2018. Dynamic
Kelvinlets: Secondary motions based on
fundamental solutions of elastodynamics.
ACM Trans. Graph. 37, 4, Article 81 (July 2018),
10 pages.
- Fernando
de Goes and Doug L. James. 2019. Sharp
Kelvinlets: Elastic deformations with cusps
and localized falloffs. In
Proceedings of the 2019 Digital Production
Symposium (DigiPro ’19). Association for
Computing Machinery, New York, NY, USA, Article
2, 1–8.
|
ThMar02
In-person +
virtual
|
Final Project
Proposals
|
Students
pitch their final project ideas.
- Google
Slide deck link on Ed
|
|
Fluids I (Particles)
|
Material:
- Smoothed Particle Hydrodynamics (SPH)
- Matthias Müller, David
Charypar, Markus Gross, Particle-based
fluid simulation for interactive
applications, 2003
ACM SIGGRAPH / Eurographics Symposium on
Computer Animation (SCA 2003), August 2003, pp. 154-159. [Video]
- Miles Macklin and Matthias Müller. Position
Based Fluids. ACM Trans. Graph. 32, 4,
Article 104 (July 2013), 12 pages. [PDF]
[Slides] [Video]
[Project
Page] (other
videos)
- Liu, G. Gui-Rong, and M. B. Liu. Smoothed
particle hydrodynamics: a meshfree particle
method. World
Scientific, 2003.
- Wikipedia
- Takahiro Harada, Seiichi Koshizuka, Yoichiro
Kawaguchi, Smoothed Particle
Hydrodynamics on GPUs, Computer Graphics
International, pp. 63-70, 2007.
- B. Solenthaler, R.
Pajarola, Predictive-Corrective
Incompressible SPH, ACM
Transactions on Graphics, 28(3), July 2009, pp. 40:1-40:6. [PDF]
[YouTube
Video]
- SIGGRAPH fluids course: [SPH
pages (pp.
83-86)]
- Bridson, R., Fedkiw, R., and Muller-Fischer,
M. 2006. Fluid simulation:
SIGGRAPH 2006 course notes, In
ACM SIGGRAPH 2006 Courses (Boston,
Massachusetts, July 30 - August 03, 2006).
SIGGRAPH '06. ACM Press, New York, NY,
1-87. [Slides, Notes]
- Robert
Bridson, Fluid Simulation
for Computer Graphics, A K
Peters, 2008. [Book
format]
- Coupling SPH and rigid-body simulations
(advanced):
- N. Akinci, M. Ihmsen, G. Akinci, B.
Solenthaler, M. Teschner, Versatile
Rigid-Fluid Coupling for Incompressible SPH, ACM
Trans. Graph. (SIGGRAPH Proc.), 2012. [PDF]
[AVI]
- Unified particle physics:
- Miles Macklin,
Matthias Müller, Nuttapong Chentanez,
Tae-Yong Kim, Unified
Particle Physics for Real-Time Applications,
ACM Transactions on Graphics (SIGGRAPH 2014),
33(4) [Slides] [PDF] [Video] [Project Page]
- Isosurface extraction + rendering
|
TuMar07
In-person +
virtual
|
Fluids II (Grids)
|
Topics:
- Navier-Stokes
equations; Euler equations for inviscid fluids
- Advection;
semi-Lagrangian methods
- Splitting
schemes
- Incompressibility
constraint & divergence-free flow
- Helmholtz-Hodge
decompositions; pressure projection
- PIC/FLIP
methods [Zhu & Bridson 2005]
- APIC
method [Jiang et al. 2015]
Slides
Material:
- Bridson,
R. and Muller-Fischer, M. 2007. Fluid Simulation
for Computer Animation: SIGGRAPH 2007 Course
Notes, In ACM SIGGRAPH 2007
Courses. [Slides, Notes]
(main reference for class)
- Jos
Stam, Stable Fluids,
Proceedings of SIGGRAPH 99, Computer Graphics
Proceedings, Annual Conference Series, August
1999, pp. 121-128. [Slides
and notes]
- Ronald
Fedkiw, Jos Stam, Henrik Wann Jensen, Visual Simulation
of Smoke, Proceedings of ACM
SIGGRAPH 2001, Computer Graphics Proceedings,
Annual Conference Series, August 2001, pp.
15-22. (introduces vorticity
confinement forces)
- C.
Jiang, C. Schroeder, A. Selle, J. Teran, A.
Stomakhin, An
Affine Particle-In-Cell Method, ACM
Transactions on Graphics (SIGGRAPH 2015), 34(4),
pp. 51:1-51:10, 2015. [PDF]
- Y. Zhu
and R. Bridson, Animating sand as a fluid, ACM
SIGGRAPH 2005. [PDF]
[MOV]
(introduced PIC/FLIP to graphics)
|
ThMar09
In-person + virtual
|
Guest Lecture: Jiayi Eris
Zhang
|
Topics:
- Deformable
collision processing (collision detection,
Incremental potential contact, etc.)
- Progressive
cloth simulation
|
TuMar14
In-person + virtual
|
Material
Point Method (MPM), and Snow
Simulation
|
Discussed:
- Material
Point Method (MPM) overview
- Application
to snow simulation
- Deformation
gradient
- Elastic
strain energy, forces, and gradients
- Multiplicative
plasticity methodology; application to snow
- Grid
force and gradient calculations
- Semi-implicit
integration of velocities
- Deformation
gradient update
- Grid
and particle collision handling
- Slides
(courtesy Craig Schroeder & Joseph
Teran)
- Practical
tips for making a minimum viable snow simulator
Material:
- Alexey
Stomakhin, Craig
Schroeder, Lawrence Chai, Joseph
Teran, Andrew Selle, A
Material Point Method for Snow Simulation,
ACM Transactions on Graphics (SIGGRAPH 2013),
32(4), pp. 102:1-102:10, 2013. [PDF] [YouTube Video]
- Chenfanfu
Jiang, Craig Schroeder, Joseph Teran,
Alexey Stomakhin, Andrew Selle, The Material
Point Method for Simulating Continuum
Materials, SIGGRAPH Course 2016. [PDF]
- Disney's
Matterhorn
simulator
|
ThMar16
In-person
+ virtual |
Final Project Presentations
|
See Ed for instructions (slide
deck, Canvas submission)
|
|
SUPPLEMENTAL
MATERIAL (below here)
|
|
|
Application
of Rigid-Body Motion:
Shape Matching Methods
|
Discussed:
- General
ideas:
- Projecting
particle motion to be rigid motion
- Deformation
gradient & Polar decomposition
- Rigid-body shape
matching
- Fast Lattice Shape
Matching (FastLSM)
- Other methods
(adaptive FastLSM; Oriented particles)
Material:
- Matthias
Müller, Bruno Heidelberger, Matthias Teschner,
Markus Gross, Meshless
deformations based on shape matching,
ACM Transactions on Graphics, 24(3), August
2005, pp. 471-478. [ACM] [PDF] [AVI]
- Alec
R. Rivers, Doug L. James, FastLSM: Fast
Lattice Shape Matching for Robust Real-Time
Deformation, ACM Transactions on
Graphics, 26(3), July 2007, pp. 82:1-82:6. [ACM] [PDF]
- Denis
Steinemann, Miguel A. Otaduy, Markus Gross, Fast Adaptive Shape
Matching Deformations, ACM
SIGGRAPH/Eurographics Symposium on Computer
Animation, Dublin, July 7-9, 2008. [PDF] [AVI]
- Matthias
Müller and Nuttapong Chentanez. Solid
simulation with oriented particles. ACM
Trans. Graph. 30, 4, Article 92 (July 2011), 10
pages, 2011. [ACM]
[PDF]
[MOVIE]
|
|
Rigid-body Contact:
Impulse- and Contraint-based Methods:
|
Material:
- General
discussion of rigid-body contact principles
(contact constraints & impulses,
restitution, Coulomb friction, maximal
dissipation principle, Signorini-Fichera
condition, connection with constrained
optimization & KKT conditions, etc.), and
methods such as impulse-based [Guendelman et al.
2003] and constraint-based [Erleben et al. 2007;
Kaufman et al. 2008] solvers.
- Impulse-based
contact solvers:
- Brian Mirtich, John Canny, Impulse-based
Simulation of Rigid Bodies, 1995
Symposium on Interactive 3D Graphics, April 1995, pp. 181-188.
- Eran
Guendelman, Robert Bridson, Ronald P. Fedkiw, Nonconvex Rigid
Bodies With Stacking, ACM
Transactions on Graphics, 22(3), July 2003, pp.
871-878. [an iterative impulse-based solver]
- Projected
Gauss-Seidel solver:
- K.
Erleben, Stable, robust,
and versatile multibody dynamics animation. Ph.D.
thesis, Department of Computer Science,
University of Copenhagen, Denmark, 2005. [avi movie]
- K.
Erleben, Velocity-based
shock propagation for multibody dynamics
animation, ACM Trans. Graph.
26, 2, Jun. 2007.
- Projected
Jacobi solver:
- SIAM
Review of rigid-body contact:
- Excellent
recent review:
- "Staggered
Projections"
method:
- A good
reference on convex optimization:
- Stephen
Boyd and Lieven Vandenberghe, Convex
Optimization, Cambridge
University Press, 2004.
- Stanford
lecture notes/book [PDF]
|
|
Animation Sound
|
Material:
- K. van den
Doel and D. K. Pai, The
Sounds of Physical Shapes, Presence:
Teleoperators and Virtual Environments, 7:4, The
MIT Press, 1998. pp. 382--395.
- Kees van den
Doel, Paul G. Kry, Dinesh K. Pai, FoleyAutomatic:
Physically-Based Sound Effects for Interactive
Simulation and Animation, Proceedings of
ACM SIGGRAPH 2001, Computer Graphics
Proceedings, Annual Conference Series, August
2001, pp. 537-544. [Video]
- Dinesh K.
Pai, Kees van den Doel, Doug L. James, Jochen
Lang, John E. Lloyd, Joshua L. Richmond, Som H.
Yau, Scanning
Physical Interaction Behavior of 3D Objects,
Proceedings of ACM SIGGRAPH 2001, Computer
Graphics Proceedings, Annual Conference Series,
August 2001, pp. 87-96. [Video]
- James F.
O'Brien, Perry R. Cook, Georg Essl, Synthesizing
Sounds From Physically Based Motion,
Proceedings of ACM SIGGRAPH 2001, Computer
Graphics Proceedings, Annual Conference Series,
August 2001, pp. 529-536.
- Perry R.
Cook, Sound
Production and Modeling, IEEE Computer
Graphics & Applications, 22(4), July-August
2002, pp. 23-27.
- James F.
O'Brien, Chen Shen, and Christine M. Gatchalian. Synthesizing
sounds from rigid-body simulations. In
The ACM SIGGRAPH 2002 Symposium on Computer
Animation, pages 175–181. ACM Press, July 2002.
- Yoshinori
Dobashi, Tsuyoshi Yamamoto, Tomoyuki
Nishita, Real-Time
Rendering of Aerodynamic Sound Using Sound
Textures Based on Computational Fluid Dynamics,
ACM Transactions on Graphics, 22(3), July 2003,
pp. 732-740. [project
page]
- Doug L.
James, Jernej Barbić and Dinesh K. Pai, Precomputed Acoustic
Transfer: Output-sensitive, accurate sound
generation for geometrically complex vibration
sources, ACM Transactions on Graphics,
25(3), pp. 987-995, July 2006, pp. 987-995.
- Changxi
Zheng and Doug L. James, Harmonic
Fluids, ACM Transaction on Graphics
(SIGGRAPH 2009), 28(3), August 2009, pp.
37:1-37:12.
- Jeffrey
Chadwick, Steven An, and Doug L. James, Harmonic
Shells: A Practical Nonlinear Sound Model for
Near-Rigid Thin Shells, ACM Transactions
on Graphics (SIGGRAPH ASIA Conference
Proceedings), 28(5), December 2009, pp.
119:1-119:10.
- Changxi
Zheng and Doug L. James, Rigid-Body
Fracture Sound with Precomputed Soundbanks,
ACM Transactions on Graphics (SIGGRAPH 2010),
29(3), July 2010, pp. 69:1-69:13.
- Jeffrey Chadwick and Doug L. James, Animating Fire with Sound, ACM
Transactions on Graphics, 30(4),
August 2011.
- Jeffrey N. Chadwick, Changxi Zheng and Doug L. James, Precomputed Acceleration
Noise for Improved Rigid-Body Sound, ACM
Transactions on Graphics, August
2012.
- Steven S. An , Doug L. James, and Steve Marschner, Motion-driven
Concatenative Synthesis of Cloth Sounds, ACM
Transactions on Graphics, August
2012.
- Timothy
R. Langlois and
Doug L. James, Inverse-Foley
Animation: Synchronizing rigid-body motions
to sound, ACM Transactions on Graphics
(SIGGRAPH 2014), 33(4), August 2014.
|