Ray Tracing on Programmable Graphics Hardware

Timothy J. Purcell, Ian Buck, William R. Mark, and Pat Hanrahan

ACM Transactions on Graphics. 21 (3), pp. 703-712, 2002. (Proceedings of ACM SIGGRAPH 2002). BibTeX

Abstract

Recently a breakthrough has occurred in graphics hardware: fixed function pipelines have been replaced with programmable vertex and fragment processors. In the near future, the graphics pipeline is likely to evolve into a general programmable stream processor capable of more than simply feed-forward triangle rendering.

In this paper, we evaluate these trends in programmability of the graphics pipeline and explain how ray tracing can be mapped to graphics hardware. Using our simulator, we analyze the performance of a ray casting implementation on next generation programmable graphics hardware. In addition, we compare the performance difference between non-branching programmable hardware using a multipass implementation and an architecture that supports branching. We also show how this approach is applicable to other ray tracing algorithms such as Whitted ray tracing, path tracing, and hybrid rendering algorithms. Finally, we demonstrate that ray tracing on graphics hardware could prove to be faster than CPU based implementations as well as competitive with traditional hardware accelerated feed-forward triangle rendering.

Paper

PDF (211 KB)
PostScript (1.8 MB)

Talk Slides

HTML

Tim Purcell

ACM Copyright Notice
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.