Shape Completion using 3D-Encoder-Predictor CNNs and Shape Synthesis
Data Formats
For 323, we have train and test data ashdf5. We also provide the raw scanned and complete data at 323 and 1283 in custom binary formats:
- Partial Data (
*.sdf):#binary
dimX #uint64
dimY #uint64
dimZ #uint64
data #(dimX*dimY*dimZ) floats for sdf values - Complete Data (
*.df):#binary
dimX #uint64
dimY #uint64
dimZ #uint64
data #(dimX*dimY*dimZ) floats for df values
Input Data
We provide virtually scanned partial models as from ShapeNet Core, as well as their corresponding distance transforms of the complete models. Files are structured [class id]/[model id]__[trajectory id]__.[sdf/df]
- h5_shapenet_dim32_sdf.zip (30GB)
- shapenet_dim32_df.zip (4GB)
- shapenet_dim32_sdf.zip (11GB)
- shapenet_dim64_df.zip (30GB)
- shapenet_dim128_df.zip (256GB)
- shapenet_dim32_sdf_pc.zip (10GB)
Benchmark
We provide two synthetic test benchmarks of 1200 partial models each (shapenet model id list here). The images benchmark contains models scanned with a single depth image using a horizontal camera, while the scans benchmark contains models scanned from a trajectory with at least one depth image. We also provide a real test benchmark on real scan data based on the dataset from Qi et. al. 2016, containing instances from the chair, desk, nightstand, sofa, and table categories.
- h5_test-real_dim32_sdf.zip (5MB)
- test-real_dim32_sdf.zip (4MB)
- h5_test-images_dim32_sdf.zip (150MB)
- test-images_dim32_sdf.zip (18MB)
- h5_test-scans_dim32_sdf.zip (180MB, see input data above for corresponding
- test-images_dim128_sdf.zip (960MB)
- test-images_dim32_sdf_pc.zip (13MB)
- for test-scans, see point cloud data above for the respective shapenet model ids
Our results:
- output-test-real-32.zip (10MB)
- output-test-real-128.zip (100MB)
- output-test-images-32.zip (110MB)
- output-test-images-128.zip (800MB)
- output-test-scans-32.zip (110MB)
- output-test-scans-128.zip (800MB)
Trained models (including classifier): trained_models.zip (740MB)
ℓ1 norm to ground truth distance field (masked) |
||||
|---|---|---|---|---|
method |
scans, 323 |
scans, 1283 |
images, 323 |
images, 1283 |
| epn-unet-class + synth [1] | 0.309 | 1.80 | 0.374 | 1.89 |
| epn-unet + synth [1] | 0.310 | 1.82 | 0.379 | 1.91 |
| epn-class + synth [1] | 0.376 | 1.92 | 0.483 | 2.16 |
| epn + synth [1] | 0.382 | 1.94 | 0.512 | 2.33 |
| 3d ShapeNets [2] | - | - | 0.905 | 3.70 |
| ShapeRecon [3] | - | - | 0.970 | 4.63 |
| Poisson Surface Reconstruction [4,5] | - | - | 1.91 | 8.46 |
To add your results to the leaderboard, please email Angela Dai.
[1] A. Dai, C. Qi, M. Nießner. Shape Completion using 3D-Encoder-Predictor CNNs and Shape Synthesis. CVPR 2017.
[2] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, J. Xiao. 3D ShapeNets: A Deep Representation for Volumetric Shapes. CVPR 2015.
[3] J. Rock, T. Gupta, J. Thorsen, J. Gwak, D. Shin, D. Hoiem. Completing 3D Object Shape from One Depth Image. CVPR 2015.
[4] M. Kazhdan, M. Bolitho, H. Hoppe. Poisson Surface Reconstruction. Eurographics Symposium on Geometry Processing 2016.
[5] M. Kazhdan, H. Hoppe. Screened Poisson Surface Reconstruction. SIGGRAPH 2013.