This section describes a function to compute a minimal enclosing strip (not necessarily axis-parallel) of a given convex point set. Note that this strip is not unique in general. A strip is the closed region bounded by two parallel lines in the plane.
#include <CGAL/minimum_enclosing_quadrilateral_2.h>
|
| ||||||
|
|
| |||||
computes a minimum enclosing strip of the point set described by
[points_begin, points_end), writes its bounding lines to
o and returns the past-the-end iterator of this sequence.
If the input range is empty or consists of one element only, o
remains unchanged.
#include <CGAL/Cartesian.h>
#include <CGAL/Point_2.h>
#include <CGAL/Polygon_2.h>
#include <CGAL/point_generators_2.h>
#include <CGAL/random_convex_set_2.h>
#include <CGAL/minimum_enclosing_quadrilateral_2.h>
#include <vector>
#include <iostream>
using CGAL::Random_points_in_square_2;
using CGAL::random_convex_set_2;
using CGAL::minimum_enclosing_strip_2;
using std::back_inserter;
using std::cout;
using std::endl;
typedef CGAL::Cartesian< double > R;
typedef R::Point_2 Point_2;
typedef R::Line_2 Line_2;
typedef CGAL::Polygon_traits_2< R > P_traits;
typedef std::vector< Point_2 > Cont;
typedef CGAL::Polygon_2< P_traits, Cont > Polygon_2;
typedef CGAL::Creator_uniform_2< double, Point_2 > Creator;
typedef Random_points_in_square_2< Point_2, Creator > Point_generator;
int main()
{
// build a random convex 20-gon p
Polygon_2 p;
random_convex_set_2(20, back_inserter(p), Point_generator(1.0));
cout << p << endl;
// compute the minimal enclosing strip p_m of p
Line_2 p_m[2];
minimum_enclosing_strip_2(
p.vertices_begin(), p.vertices_end(), p_m);
cout << p_m[0] << "\n" << p_m[1] << endl;
return 0;
}