Navigation: Table of Contents, Bibliography, Index, Title Page

CGAL Basic Library Reference Manual
Bibliography


[AKM+87] A. Aggarwal, M. M. Klawe, S. Moran, P. Shor, and R. Wilber. Geometric applications of a matrix-searching algorithm. Algorithmica, 2:195-208, 1987.

[And78] K. R. Anderson. A reevaluation of an efficient algorithm for determining the convex hull of a finite planar set. Inform. Process. Lett., 7(1):53-55, 1978.

[And79] A. M. Andrew. Another efficient algorithm for convex hulls in two dimensions. Inform. Process. Lett., 9(5):216-219, 1979.

[AT78] S. G. Akl and G. T. Toussaint. A fast convex hull algorithm. Inform. Process. Lett., 7(5):219-222, 1978.

[Bau75] B. G. Baumgart. A polyhedron representation for computer vision. In Proc. AFIPS Natl. Comput. Conf., volume 44, pages 589-596, 1975.

[BB97] F. Bernardini and C. Bajaj. Sampling and reconstructing manifolds using alpha-shapes. Technical Report CSD-TR-97-013, Dept. Comput. Sci., Purdue Univ., West Lafayette, IN, 1997.

[BFH95] Heinzgerd Bendels, Dieter W. Fellner, and Sven Havemann. Modellierung der grundlagen: Erweiterbare datenstrukturen zur modellierung und visualisierung polygonaler welten. In D. W. Fellner, editor, Modeling - Virtual Worlds - Distributed Graphics, pages 149-157, Bad Honnef / Bonn, 27.-28. November 1995.

[BPP95] Gavin Bell, Anthony Parisi, and Mark Pesce. Vrml the virtual reality modeling language: Version 1.0 specification. http://www.vrml.org/, May 26 1995. Third Draft.

[BY98] Jean-Daniel Boissonnat and Mariette Yvinec. Algorithmic Geometry. Cambridge University Press, UK, 1998. Translated by Hervé Brönnimann.

[Byk78] A. Bykat. Convex hull of a finite set of points in two dimensions. Inform. Process. Lett., 7:296-298, 1978.

[dBvKOS97] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf. Computational Geometry: Algorithms and Applications. Springer-Verlag, Berlin, 1997.

[Dev98] Olivier Devillers. Improved incremental randomized Delaunay triangulation. In Proc. 14th Annu. ACM Sympos. Comput. Geom., pages 106-115, 1998.

[DLanRT98] Olivier Devillers, Giuseppe Liotta, and Franco P. Preparata a nd Roberto Tamassia. Checking the convexity of polytopes and the planarity of subdiv isions. Comput. Geom. Theory Appl., 11:187-208, 1998.

[Edd77] W. F. Eddy. A new convex hull algorithm for planar sets. ACM Trans. Math. Softw., 3:398-403 and 411-412, 1977.

[Ede92] H. Edelsbrunner. Weighted alpha shapes. Technical Report UIUCDCS-R-92-1760, Dept. Comput. Sci., Univ. Illinois, Urbana, IL, 1992.

[EM94] H. Edelsbrunner and E. P. Mücke. Three-dimensional alpha shapes. ACM Trans. Graph., 13(1):43-72, January 1994.

[ES96] H. Edelsbrunner and N. R. Shah. Incremental topological flipping works for regular triangulations. Algorithmica, 15:223-241, 1996.

[FJ83] G. N. Frederickson and D. B. Johnson. Finding kth paths and p-centers by generating and searching good data structures. J. Algorithms, 4:61-80, 1983.

[FJ84] G. N. Frederickson and D. B. Johnson. Generalized selection and ranking: sorted matrices. SIAM J. Comput., 13:14-30, 1984.

[FvW96] S. Fortune and C. J. van Wyk. Static analysis yields efficient exact integer arithmetic for computational geometry. ACM Trans. Graph., 15(3):223-248, July 1996.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns - Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[Gra72] R. L. Graham. An efficient algorithm for determining the convex hull of a finite planar set. Inform. Process. Lett., 1:132-133, 1972.

[GS85] Leonidas J. Guibas and J. Stolfi. Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams. ACM Trans. Graph., 4:74-123, 1985.

[GS97a] B. Gärtner and S. Schönherr. Exact primitives for smallest enclosing ellipses. In Proc. 13th Annu. ACM Symp. on Computational Geometry, pages 430-432, 1997.

[GS97b] Bernd Gärtner and Sven Schönherr. Smallest enclosing ellipses - fast and exact. Serie B - Informatik B 97-03, Freie Universität Berlin, Germany, June 1997. URL http://www.inf.fu-berlin.de/inst/pubs/tr-b-97-03.abstract.html.

[GS98a] Bernd Gärtner and Sven Schönherr. Smallest enclosing circles - an exact and generic implementation in C++. Serie B - Informatik B 98-04, Freie Universität Berlin, Germany, April 1998. URL http://www.inf.fu-berlin.de/inst/pubs/tr-b-98-04.abstract.html.

[GS98b] Bernd Gärtner and Sven Schönherr. Smallest enclosing ellipses - an exact and generic implementation in C++. Serie B - Informatik B 98-05, Freie Universität Berlin, Germany, April 1998. URL http://www.inf.fu-berlin.de/inst/pubs/tr-b-98-05.abstract.html.

[Hai94] Eric Haines. Point in polygon strategies. In Paul Heckbert, editor, Graphics Gems IV, pages 24-46. Academic Press, Boston, MA, 1994.

[Hal97] D. Halperin. Arrangements. In Jacob E. Goodman and Joseph O'Rourke, editors, Handbook of Discrete and Computational Geometry, chapter 21, pages 389-412. CRC Press LLC, Boca Raton, FL, 1997.

[Jar73] R. A. Jarvis. On the identification of the convex hull of a finite set of points in the plane. Inform. Process. Lett., 2:18-21, 1973.

[Ket98] Lutz Kettner. Designing a data structure for polyhedral surfaces. In Proc. 14th Annu. ACM Sympos. Comput. Geom., pages 146-154, 1998.

[KW97] Dietmar Kühl and Karsten Weihe. Data access templates. C++ Report, June 1997.

[Män88] M. Mäntylä. An Introduction to Solid Modeling. Computer Science Press, Rockville, MD, 1988.

[Meh84] K. Mehlhorn. Multi-dimensional Searching and Computational Geometry, volume 3 of Data Structures and Algorithms. Springer-Verlag, Heidelberg, West Germany, 1984.

[Mel87] A. Melkman. On-line construction of the convex hull of a simple polyline. Inform. Process. Lett., 25:11-12, 1987.

[MMN+97] K. Mehlhorn, M. Mueller, S. Naeher, S. Schirra, M. Seel, C. Uhrig, and J. Ziegler. A computational basis for higher dimensional computational geometry and applications. In Proc. 13th Annu. ACM Sympos. Comput. Geom., pages 254-263, 1997.

[MN99] K. Mehlhorn and S. Näher. LEDA - A platform for combnatorial and geometric computing. Cambridge University Press, 1999.

[MNS+96] Kurt Mehlhorn, Stefan Näher, Thomas Schilz, Stefan Schirra, Michael Seel, Raimund Seidel, and Christian Uhrig. Checking geometric programs or verification of geometric structures. In Proc. 12th Annu. ACM Sympos. Comput. Geom., pages 159-165, 1996.

[MP78] D. E. Muller and F. P. Preparata. Finding the intersection of two convex polyhedra. Theoret. Comput. Sci., 7:217-236, 1978.

[MS96] David R. Musser and Atul Saini. STL Tutorial and Reference Guide: C++ Programming with the Standard Template Library. Addison-Wesley, 1996.

[Mul90] K. Mulmuley. A fast planar partition algorithm, I. J. Symbolic Comput., 10(3-4):253-280, 1990.

[Phi94] Mark Phillips. Geomview Manual: Geomview Version 1.5 for Silicon Graphics Workstations. The Geometry Center, University of Minnesota, October 1994. http://www.geom.umn.edu/software/download/geomview.html.

[PS85] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag, New York, NY, 1985.

[SA95] Micha Sharir and P. K. Agarwal. Davenport-Schinzel Sequences and Their Geometric Applications. Cambridge University Press, New York, 1995.

[Sam90] H. Samet. Design and Analysis of Spatial Data Structures. Addison-Wesley, Reading, MA, 1990.

[Sei91] R. Seidel. A simple and fast incremental randomized algorithm for computing trapezoidal decompositions and for triangulating polygons. Comput. Geom. Theory Appl., 1:51-64, 1991.

[SL95] Alexander Stepanov and Meng Lee. The standard template library. http://www.cs.rpi.edu/~musser/doc.ps, October 1995.

[Str97] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, 3rd edition, 1997.

[STV+95] Christian Schwarz, Jürgen Teich, Alek Vainshtein, Emo Welzl, and Brian L. Evans. Minimal enclosing parallelogram with application. In Proc. 11th Annu. ACM Sympos. Comput. Geom., pages C34-C35, 1995.

[SW96] Micha Sharir and Emo Welzl. Rectilinear and polygonal p-piercing and p-center problems. In Proc. 12th Annu. ACM Sympos. Comput. Geom., pages 122-132, 1996.

[Tou83] G. T. Toussaint. Solving geometric problems with the rotating calipers. In Proc. IEEE MELECON '83, pages A10.02/1-4, 1983.

[Vai90] A. Vainshtein. Finding minimal enclosing parallelograms. Diskretnaya Matematika, 2:72-81, 1990. In Russian.

[VRM96] The virtual reality modeling language specification: Version 2.0, ISO/IEC CD 14772. http://www.vrml.org/, August 4 1996.

[Wei85] K. Weiler. Edge-based data structures for solid modeling in a curved surface environment. IEEE Comput. Graph. Appl., 5(1):21-40, 1985.

[Wel91] Emo Welzl. Smallest enclosing disks (balls and ellipsoids). In H. Maurer, editor, New Results and New Trends in Computer Science, volume 555 of Lecture Notes Comput. Sci., pages 359-370. Springer-Verlag, 1991.

[Wer94] Josie Wernicke. The Inventor Mentor: Programming Object-Oriented 3D Graphics with Open Inventor, Release 2. Addison-Wesley, 1994.


Navigation: Table of Contents, Bibliography, Index, Title Page
The GALIA project. Jan 18, 2000.